Entanglement and symmetry in high-energy scattering

Kamila Kowalska

in collaboration with Enrico Maria Sessolo

based on: JHEP 07 (2024) 156 (arXiv: 2404.13743)

Annual Department Seminar

05.12.2024

Entanglement bit by bit

 $|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle \pm \frac{1}{\sqrt{2}}|11\rangle$ $|\psi\rangle = \frac{1}{\sqrt{2}}|01\rangle \pm \frac{1}{\sqrt{2}}|10\rangle$ **2. non-separable (entangled)**

Entanglement is hot!

Measured experimentally (Bell inequalities violation) for linear polarization of low-energy photons

Clauser et al., '72; Aspect et al., '82; Zeilinger et al., '98;

ATLAS '23; CMS '24

Entanglement is hot!

Measured experimentally (Bell inequalities violation) for linear polarization of low-energy photons

Clauser et al., '72; Aspect et al., '82; Zeilinger et al., '98;

ATLAS '23; CMS '24

Quantum computing

dense coding (Bennett, Wiesner, '92), teleportation (Bennett et at., '93), key distrubution (Ekert, '91)

nature

 $nature > articles > article$

The ATLAS Collaboration

Explore content \sim About the journal \sim Publish with us \sim

Observation of quantum entanglement with top

Article | Open access | Published: 18 September 2024

quarks at the ATLAS detector

Nature 633, 542-547 (2024) | Cite this article

Entanglement is hot!

Measured experimentally (Bell inequalities violation) for linear polarization of low-energy photons

Clauser et al., '72; Aspect et al., '82; Zeilinger et al., '98;

ATLAS '23; CMS '24

Quantum computing

dense coding (Bennett, Wiesner, '92), teleportation (Bennett et at., '93), key distrubution (Ekert, '91)

nature

nature > articles > article

The ATLAS Collaboration

Explore content \vee About the journal \vee Publish with us \vee

Observation of quantum entanglement with top

Article | Open access | Published: 18 September 2024

quarks at the ATLAS detector

Nature 633, 542-547 (2024) | Cite this article

quantum tomography ex. Afik, de Nova, EPJ Pus 136 (9) (2021) 907

use entanglement (and other quantum observables) to enhance sensitivity of collider searches

theoretical implications

investigate connections between entanglement and fundamental properties of quantum field theories

Emergent symmetries

Symmetries arising from **entanglement extremization** in scattering processes

• non-relativistic baryon-baryon scattering

 Beane, Kaplan, Klco, Savage, PRL 122 (2019) 102001

quantum electrodynamics

Cervera-Lierta et al., SciPost Phys 3 (2017) 036 Fedida, Serafini, PRD 107 (2023) 116007

Two-Higgs-doublet model

Carena, Low, Wagner, Xiao PRD 109 (2024) L051901

SU(4) and SU(16) global symmetries from **minimizing** entanglement among spins

U(1) gauge symmetry from **maximizing** entanglement among helicities

indications of SO(8) global symmetry from **minimizing** entanglement among Higgs boson "flavors"

Emergent symmetries

Symmetries arising from **entanglement extremization** in scattering processes

• non-relativistic baryon-baryon scattering

 Beane, Kaplan, Klco, Savage, PRL 122 (2019) 102001

• quantum electrodynamics

Cervera-Lierta et al., SciPost Phys 3 (2017) 036 Fedida, Serafini, PRD 107 (2023) 116007

Two-Higgs-doublet model

Carena, Low, Wagner, Xiao PRD 109 (2024) L051901

from **minimizing** entanglement among spins

SU(4) and SU(16) global symmetries

U(1) gauge symmetry from **maximizing** entanglement among helicities

indications of SO(8) global symmetry from **minimizing** entanglement among Higgs boson "flavors"

- Red flags one (out of several) scattering channel was considered
	- their formalism does not preserve unitarity can't quantify entanglement exactly

Entanglement in scattering

Hilbert space: **momentum + flavor** (qubit) $\mathcal{H}_{\text{tot}} = L^2(\mathbb{R}^3 \otimes \mathbb{R}^3) \otimes \mathbb{C}^4$

In perturbation theory:

$$
S_{\gamma\delta\alpha\beta}^{ijab} = (\mathcal{I} + iT)_{\gamma\delta\alpha\beta}^{ijab}
$$

= $(2\pi)^6 4 E_a E_b \delta_{\gamma\delta\alpha\beta}^{ijab} + (2\pi)^4 \delta^4 (p_a + p_b - p_i - p_j) i \mathcal{M}_{\gamma\delta,\alpha\beta} (p_a, p_b \to p_i, p_j)$

The final-state density matrix:

$$
\boxed{\rho = |{\rm out}\rangle\langle{\rm out}|}
$$

encodes all the properties of a quantum system **(entanglement)**

Perturbative density matrix

$$
\boxed{\rho = |{\rm out}\rangle\langle{\rm out}|}
$$

Shao et al., '08; Seki et al., '15; Peschanski, Seki, '16, '19; Carney et al., '16; Rätzel et al., '17; Fan et al., '17; Araujo et al., '19; Fan et al., '21; Fonseca et al., '22; Shivashankara '23; Aoude et al., '24

optical theorem unitarity of the *S*-matrix

$$
\Delta = \frac{(2\pi)^4 \delta^4 (p_A + p_B - p_A - p_B)}{4E_A E_B [(2\pi)^3 \delta^3(0)]^2}
$$

(indeterminate normalization)

We need to work at 1-loop order Carena et al. '24 only tree level

2HDM in a nutshell

two flavors inert SU(2) doublets: scalar potential: only this channel considered **contact interactions** in Carena et al. '24

Q: any constraints on λ from entanglement extremization?

Entanglement creation

no initial entanglement: $|\text{in}\rangle = \frac{1}{\sqrt{V}} |\textbf{p}_A\textbf{p}_B\rangle|11\rangle$

reduced density matrix (tracing out the momentum)

post-scattering entanglement:

von Neuman entropy

concurrence

$$
C(\rho^F) = \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}
$$

$$
\lambda: \text{eigenvalues of } \rho^F(\sigma_y \otimes \sigma_y)\rho^{F*}(\sigma_y \otimes \sigma_y)
$$

$$
C(\rho^F) = \sqrt{\frac{2\Delta\lambda_5^2}{\pi}} + 32\Delta^2\lambda_5^2
$$

 $h^0 h^0 \rightarrow h^0 h^0$

Entanglement creation

no initial entanglement: $|\text{in}\rangle = \frac{1}{\sqrt{V}} |\textbf{p}_A\textbf{p}_B\rangle|11\rangle$

reduced density matrix (tracing out the momentum)

post-scattering entanglement:

von Neuman entropy

Repeating for |12>, |21>, |22> (all channels):

couplings that generate entanglement

concurrence

$$
C(\rho^F) = \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}
$$

λ: eigenvalues of
$$
ρ^F(σ_y ⊗ σ_y)ρ^{F*}(σ_y ⊗ σ_y)
$$

$$
C(\rho^F) = \sqrt{\frac{2\Delta\lambda_5^2}{\pi}} + 32\Delta^2\lambda_5^2
$$

 $h^0 h^0 \rightarrow h^0 h^0$

 $\lambda_3 = \lambda_4 = \lambda_5 = 0$ different from $\lambda_1 = \lambda_2 = \lambda_3 \neq 0$ Carena et al. '24

No symmetry from entanglement minimization

maximal initial flavor entanglement:
$$
|\text{in}\rangle = \frac{1}{\sqrt{V}} |\textbf{p}_A\textbf{p}_B\rangle \frac{1}{\sqrt{2}} (|11\rangle + |22\rangle)
$$

\n $S_N(\rho_{\text{in}}^F) = 0, C(\rho_{\text{in}}^F) = 1$

post-scattering entanglement:

von Neuman entropy and the concurrence

$$
\theta_1 = 1 - \Delta (1 - 16\pi \Delta) \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_6 + \lambda_7)^2}{4\pi}
$$

$$
\theta_2 = \Delta (1 - 16\pi \Delta) \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_6 + \lambda_7)^2}{4\pi}
$$

$$
C(\rho^F) = \sqrt{1 - \Delta \left(1 - 16\pi\Delta\right) \frac{\left(\lambda_1 - \lambda_2\right)^2 \sqrt{\left(\lambda_6 + \lambda_7\right)^2}}{2\pi}}
$$

C<1, entanglement is reduced

S>0, entanglement increases

Entanglement "flows''

from flavor Hilbert space to full Hilbert space

maximal initial flavor entanglement:
$$
|\text{in}\rangle = \frac{1}{\sqrt{V}} |\textbf{p}_A\textbf{p}_B\rangle \frac{1}{\sqrt{2}} (|11\rangle + |22\rangle)
$$

\n $S_N(\rho_{\text{in}}^F) = 0, C(\rho_{\text{in}}^F) = 1$

post-scattering entanglement:

von Neuman entropy and the concurrence

$$
\theta_1 = 1 - \Delta (1 - 16\pi \Delta) \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_6 + \lambda_7)^2}{4\pi}
$$

$$
\theta_2 = \Delta (1 - 16\pi \Delta) \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_6 + \lambda_7)^2}{4\pi}
$$

$$
C(\rho^F) = \sqrt{1 - \Delta \left(1 - 16\pi\Delta\right) \frac{\left(\lambda_1 - \lambda_2\right)^2 \sqrt{\left(\lambda_6 + \lambda_7\right)^2}}{2\pi}}
$$

C<1, entanglement is reduced

S>0, entanglement increases

Entanglement "flows''

from flavor Hilbert space to full Hilbert space

Unless:

 $\bullet \lambda_1 = \lambda_2, \lambda_6 = -\lambda_7$

Discrete 2HDM symmetries?

cf. Ferreira, Grządkowski, Ogreid, Osalnd *et al. '23*

maximal initial flavor entanglement:
$$
|\text{in}\rangle = \frac{1}{\sqrt{V}} |\textbf{p}_A\textbf{p}_B\rangle \frac{1}{\sqrt{2}} (|11\rangle + |22\rangle)
$$

\n $S_N(\rho_{\text{in}}^F) = 0, C(\rho_{\text{in}}^F) = 1$

post-scattering entanglement:

von Neuman entropy and the concurrence

$$
\theta_1 = 1 - \Delta (1 - 16\pi \Delta) \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_6 + \lambda_7)^2}{4\pi}
$$

$$
\theta_2 = \Delta (1 - 16\pi \Delta) \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_6 + \lambda_7)^2}{4\pi}
$$

$$
C(\rho^F) = \sqrt{1 - \Delta \left(1 - 16\pi\Delta\right) \frac{\left(\lambda_1 - \lambda_2\right)^2 + \left(\lambda_6 + \lambda_7\right)^2}{2\pi}}
$$

C<1, entanglement is reduced

S>0, entanglement increases

Entanglement "flows''

from flavor Hilbert space to full Hilbert space

Unless:

 $\bullet \lambda_1 = \lambda_2, \lambda_6 = -\lambda_7$

Discrete 2HDM symmetries?

cf. Ferreira, Grządkowski, Ogreid, Osalnd *et al. '23*

 $\bullet \Delta = \frac{1}{16\pi}$

Spherical symmetry of the initial wave packet (s wave)?

maximal initial flavor entanglement:
$$
|\text{in}\rangle = \frac{1}{\sqrt{V}} |\textbf{p}_A\textbf{p}_B\rangle \frac{1}{\sqrt{2}} (|11\rangle + |22\rangle)
$$

\n $S_N(\rho_{\text{in}}^F) = 0, C(\rho_{\text{in}}^F) = 1$

post-scattering entanglement:

von Neuman entropy and the concurrence

$$
\theta_1 = 1 - \Delta (1 - 16\pi \Delta) \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_6 + \lambda_7)^2}{4\pi}
$$

\n
$$
\theta_2 = \Delta (1 - 16\pi \Delta) \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_6 + \lambda_7)^2}{4\pi}
$$

$$
C(\rho^F) = \sqrt{1 - \Delta \left(1 - 16\pi\Delta\right) \frac{\left(\lambda_1 - \lambda_2\right)^2 \sqrt{\left(\lambda_6 + \lambda_7\right)^2}}{2\pi}}
$$

C<1, entanglement is reduced

S>0, entanglement increases

Entanglement "flows''

from flavor Hilbert space to full Hilbert space

Unless:

 $\bullet \lambda_1 = \lambda_2, \lambda_6 = -\lambda_7$

Discrete 2HDM symmetries?

cf. Ferreira, Grządkowski, Ogreid, Osalnd *et al. '23*

Is conservation of entanglement related to a symmetry?

work in progress...

 $\bullet \Delta = \frac{1}{16\pi}$

Spherical symmetry of the initial wave packet (s wave)?

To take home

- Post-scattering entanglement may provide a **complementary way of constraining** the interaction structure of BSM models.
- Scattering interaction **injects** entanglement in a separable system, perturbatively small in λ , Δ .
- 2HDM: **no symmetry** from entanglement minimization.
- 2HDM: entanglement can be **transformed** by some coupling combinations, may lead to symmetries.