T2K+NOvA Joint Measurement of Neutrino Oscillation Parameters

Justyna Łagoda

presented work was done byTomáš Nosek

Motivation: neutrino oscillations

- As you probably know, neutrinos oscillate (change flavour during propagation)
- mixing between weak (interacting) and mass (propagating) eigenstates:

Long baseline experiments

- accelerator muon neutrino beams, E ~1 GeV
- baseline L ~100-1000 km

T2K and NOvA

T2K vs NOvA

Joint analysis

- Different setups of oscillation baseline and energies \rightarrow different physics sensitivity
 - NOvA \rightarrow mass ordering
 - degenerations around $\delta_{CP} = \pi/2$ and $-\pi/2$
 - T2K \rightarrow CP-violation
 - degenerations around $\delta_{CP} = 0$ and π
- Opposite to "global fits", a full implementation of
 - consistent statistical inference across the full dimensionality
 - each experiments' detailed likelihood
- energy reconstruction and detector response
 In-depth review of
 - Models, systematic uncertainties and their possible correlations
- Different analysis strategies driven by different detector designs Last, not least: roughly doubled statistical power of individual experiments

Analysis strategies

Analysis method

- Based on Bayesian versions of 2020 analyses: T2K: EPJC 83 782 and NOvA: PRD 110 012005
- Full statistical treatment of experiments integrated via containerized size environment:
 - Each experiment can run the other's analysis through an analysis software container
 - Full access to Monte-Carlo and data while preserving each experiments' unique analysis approach
- Two Bayesian Markov Chain Monte Carlo fitters
- Results presented as posterior densities and credible intervals (regions) for parameters of interest
- Discrete model preferences (neutrino mass ordering, θ23 octant) presented with Bayes factors

Multiple analysis streams and independent implementation of the framework provides rigorous validation

Uncertainties and correlations

FLUX MODEL	 Different energies Different external data tuning Different treatment in the analysis 	\Rightarrow	No significant correlations between the experiments
DETECTOR MODEL	 Different detector designs and technologies Different selections Inclusive vs exclusive outgoing π Different reconstruction techniques Calorimetry vs lepton kinematics 	\Rightarrow	No significant correlations between the experiments
CROSS- SECTION MODEL	 Expecting correlations from common physics Different interaction models and generators Optimized for different energies Systematics designed for individual models and analysis approaches 	\Rightarrow	Investigate the impact of correlations in the joint analysis
		NCBJ	

Checks on impact of correlations in interaction models

Strategy to study parameters and their inter-experimental correlations with a significant impact on the parameters of interest δ_{CP} , $\sin^2\theta_{23}$, Δm^2_{32}

Fully correlating v_{μ}/v_{e} and $\overline{v}_{\mu}/\overline{v}_{e}$ cross-section uncertainties, treatment is identical (large $\delta_{_{CP}}$ impact)

- Otherwise, no direct mapping of the systematic parameters between the experiments
- Fabricated, simulated and studied a fully correlated bias for Δm_{32}^2 or $\sin^2\theta_{23}$
- Impact of correlations merits further investigation for future analyses with increased statistics
- Given current (2020) statistics, the overall sensitivity gains from correctly correlating systematics would be small, while incorrectly correlating leads to bias

One example of a

study to assess the

importance of inter-

experimental

Summary of NCBJ contributions

- MaCh3 development
- MaCh3 software container preparation and validation
- fake data studies
 - testing the impact of alternate physics models
 - development of common FDS validation tools to check pre-defined criteria for measuring neutrino oscillation parameters
 - "mock data" studies to assess the impact of inter-experimental correlations of heuristic systematic nuisance parameters with significant impact on the neutrino oscillation parameters measurements, so-called "Nightmare parameters studies".
- other analysis validations
- extracting credible intervals and regions, calculating discrete model preferences, and producing overlays and comparisons of different fit setups or results from different experiments.

Results: MO and CPV

- The joint fit is well in agreement with both individual fits
- Neither ordering has a preferen for δ_{CP} values around + $\pi/2$ (outside 3 σ CI)
- Normal ordering allows for a broad range of possible $\delta_{_{\rm CP}}$
- For inverted ordering CP-conserving δ_{CP} values outside 3σ CIs

Summary and outlook

- T2K and NOvA datasets compatible with a good posterior predictive p-value of the fit within a standard model of three oscillating neutrinos
- results disfavor values of $\delta_{_{CP}}$ around $\pi/2$ at more than 3σ . CP-conserving values of $\delta_{_{CP}}$ (0 and π) excluded at 3σ when the inverted ordering is assumed
- new competitive precision on Δm_{32}^2 measurement of <2%
- about 1σ (Bayes factor 3.6) preference for $\theta_{23} > 45^{\circ}$
- no statistically significant preference for either neutrino mass ordering
- more statistics and more profound inter-collaborative efforts to deliver high-quality results are expected from both experiments in the coming years
- T2K+NOvA also serves as an example and a base experience for the potential combined analyses of the next-generation experiments, such as DUNE and Hyper-Kamiokande

Backup slides

Fit results

		P-value	
Channel	NOvA	T2K	Combined
ν _e	0.90	$0.19_{(\nu_e)}$ $0.79_{(\nu_e 1\pi)}$	0.62
$\bar{\nu}_{e}$	0.21	0.67	0.40
$ u_{\mu}$	0.68	0.48	0.62
$ar{ u}_{\mu}$	0.38	0.87	0.72
All	0.64	0.72	0.75

Compability of results

T2K vs. NOvA

- both show a weak preference for NO
- some tension in δ_{cP} but remember: current results are statistically limited!
 - if IO: consistent preference for the $3\pi/2$ (- $\pi/2$) region, small preference for upper octant
- more data needed in both experiments!
- T2K statistical update expected soon
- new analyses from both expected 2024
- Both undergoing upgrade:
 - NOvA beam power \rightarrow 900+ kW
 - T2K beam power \rightarrow 1.3 MW, ND280 upgrade, SK-Gd
 - Goal: 3σ sensitivity for CPV (T2K) and MO (NOvA)

NOvA analysis

- neutrino flavor identification: using a convolutional neural network (image recognition)
- select (anti) ν_{μ} and (anti) ν_{e} data at both ND and FD
- extrapolate the spectra from the ND to the $F\dot{D}$
 - including the "not v_µ CC interactions"
 background
 - oscillate observed v_u spectra
 - break down ND v selected events into background sources and extrapolate

T2K Oscillation Analysis

- updates in 2022
- parametrized flux and cross section models

PoS ICHEP2022 (2022) 606

- best values of the parameters from fit to ND280 $\nu_{\mu}/\overline{\nu_{\mu}}$ data \rightarrow correct the predictions for FD \rightarrow fit to FD $\nu_{e}/\overline{\nu_{e}}$ and $\nu_{\mu}/\overline{\nu_{\mu}}$ event samples (frequentist)
- OR: fit simultaneously ND280 and FD data CCQE Parameters (Bayesian fit using Markov chain MC) 2.0 ND280 tracker Near Detector 1.0 (example Fit 0.5 0.0 of some CC0π-0p CC0π-Np -1.0 cross-section parameters) TPC <mark>FGD</mark> TPC v beam v beam 1Ring v_.-like 1Ring v_-like Number of Events Number of Events ND280 25 T2K Run 1-10, 2022 preliminary T2K Run 1-10, 2022 preliminary Pre-ND Pre-ND 20 Post-ND Post-ND 15F INGRID 10 0.2 0.4 0.2 0.4 0.6 0.8 0.60.8

Reconstructed Neutrino Energy [GeV]

Reconstructed Neutrino Energy [GeV]

T2K vs NOvA

Neutrino energy reconstruction:

T2K: two-body formula for QE or resonant interactions NOvA: calorimetric

e/μ identification T2K: Cherenkov ring shape NOvA: convolutional neural network

Number of events in (anti)v_e appearance samples

	T2k	K	DATA	Best fit total	δ	_{CP} =0	δ _{CP} = π/2	:-	
	V _e		94	96.47	8	3.56	99.0)6	
	v _e CC1	π+	14	10.47	9	.45	10.8	5	
	anti-	٧ _e	16	17.34	19.35		17.02		
)~/	A	Tot	tal	Best fit		Signal		BK	G

NOVA	observed	total	Signal	BKG
V _e	82	85.8	59±2.5	26.8±1.7
anti-v _e	33	33.2	19.2±0.7	14.0±1.0