On a possible solution to the Hubble tension

Jan J. Ostrowski

Department of Fundamental Research National Centre for Nuclear Research, Warsaw

Annual seminar of Department of Fundamental Research December 5, 2024 • Hubble law:

$$v = H_0 \cdot d$$

Edwin Hubble, Proceedings of the National Academy of Sciences, 1929

• Hubble law:

 $v = H_0 \cdot d$

 cosmological Hubble law (Ω_k = 0):

$$(1+z)\cdot\int_0^z \frac{\mathrm{d}z}{E(z)} = H_0\cdot d_L$$

where:

$$E(z) = \left(\Omega_m(1+z)^3 + \Omega_\Lambda\right)^{1/2}$$

Edwin Hubble, Proceedings of the National Academy of Sciences, 1929

Direct: distance ladder

Indirect: Cosmic Microwave Radiation

ESA and the Planck Collaboration

- the CMB-inferred Hubble constant is (Planck Collaboration 2020 Astron. Astrophys) $H_0 \approx 67.4 km/s/Mpc$
- local distance ladder measurements give (Riess et al 2022 Astrophys. J. Lett.) $H_0 \approx 73 km/s/Mpc$
- in the ACDM universe these values should be exactly the same

Perivolaropoulos, Skara, New Astronomy Review, 2022

Local universe (Cosmicflows-4, Tully et al 2022, ApJ)

Geometry of the local universe

Name	Ν	Xi	Yi	Zi
Virgo Cluster	164	-3.60	15.75	-0.65
Hydra Cluster	67	-32.62	27.95	-33.13
Fornax Cluster	51	-1.86	-14.49	-13.09
Centaurus Cluster	49	-36.11	15.83	-8.08
Pavo Cluster	18	-49.79	-23.49	10.83

• 2nd order perturbed metric of the local universe

$$\mathrm{d}s^{2} = -\mathrm{d}t^{2} + a(t)^{2} \sum_{l=0}^{2} \sum_{m=0}^{l} c_{ij}^{(l-m,m)}(x^{\mu}) \,\lambda^{l-m} \,k^{m} \,\mathrm{d}x^{i} \,\mathrm{d}x^{j} \,.$$

Local density field

Standard ACDM approach

Inhomogeneous model

Standard ACDM approach

• collecting data e.g. type la supernovae light curves

Inhomogeneous model

• mapping the local geometry and creating the mock catalog

Standard ACDM approach

- collecting data e.g. type la supernovae light curves
- converting data to the $d_L z$ relation

Inhomogeneous model

- mapping the local geometry and creating the mock catalog
- calculating null geodesics

Standard ACDM approach

- collecting data e.g. type la supernovae light curves
- converting data to the $d_L z$ relation
- fitting the low-redshift formula

$$d_L = \frac{cz}{H_0} \left(1 + A \, z + B \, z^2 + O(z^3) \right)$$

Inhomogeneous model

- mapping the local geometry and creating the mock catalog
- calculating null geodesics
- fitting the low-redshift formula

$$d_{L} = \frac{cz}{H_{0}} \left(1 + A \, z + B \, z^{2} + O(z^{3}) \right)$$

Standard ACDM approach

- collecting data e.g. type la supernovae light curves
- converting data to the $d_L z$ relation
- fitting the low-redshift formula

$$d_L = \frac{cz}{H_0} \left(1 + A \, z + B \, z^2 + O(z^3) \right)$$

Inhomogeneous model

- mapping the local geometry and creating the mock catalog
- calculating null geodesics
- fitting the low-redshift formula

$$d_L = \frac{cz}{H_0} \left(1 + A \, z + B \, z^2 + O(z^3) \right)$$

• calculating H_0

• calculating H_0

Mock data

Hubble parameter in the 2nd order CPT

• 2nd order CPT allows to probe higher than 1st order density contrast and its influence on the light propagation

- 2nd order CPT allows to probe higher than 1st order density contrast and its influence on the light propagation
- results of simulations in the 2nd order CPT suggest that local density inhomogeneities increase the value of the Hubble constant if interpreted in the strictly Λ CDM context (consistent with Riess et al 2022 Astrophys. J. Lett.):

Ω_{Vir}	0.0	0.1	0.15	0.2	0.25	0.3	0.35	0.4
H_0	67.39	67.1610	67.16	67.23	67.980	68.88	72.5	73.2
ΔH_0	1.7e-06	0.00015	0.025	0.032	0.076	0.30	3.4	2.9

- 2nd order CPT allows to probe higher than 1st order density contrast and its influence on the light propagation
- results of simulations in the 2nd order CPT suggest that local density inhomogeneities increase the value of the Hubble constant if interpreted in the strictly Λ CDM context (consistent with Riess et al 2022 Astrophys. J. Lett.):

Ω_{Vir}	0.0	0.1	0.15	0.2	0.25	0.3	0.35	0.4
H_0	67.39	67.1610	67.16	67.23	67.980	68.88	72.5	73.2
ΔH_0	1.7e-06	0.00015	0.025	0.032	0.076	0.30	3.4	2.9

• more details can be found in: Sikora, Ostrowski 2024, Classical and Quantum Gravity