Massive quarks at one loop in the dipole picture of Deep Inelastic Scattering

Guillaume Beuf

BP2, NCBJ

NCBJ annual seminar, Warsaw, December 20th 2021

A D > A B > A

Deep inelastic scattering (DIS)

$$x_{Bj} Q^2 \frac{d\sigma^{e+p \to e+X}}{dx_{Bj} d^2 Q} = \frac{2\pi \alpha_{em}^2}{Q^2} \left[1 + (1-y)^2 \right] \left\{ F_T(x_{Bj}, Q^2) + F_L(x_{Bj}, Q^2) - \frac{y^2}{\left[1 + (1-y)^2 \right]} F_L(x_{Bj}, Q^2) \right\}$$

Photon virtuality : $Q^2 \equiv -q^2 > 0$ $F_2 = F_T + F_L$ Bjorken variable : $x_{Bj} \equiv \frac{Q^2}{2P \cdot q} \sim \frac{Q^2}{W^2}$ Inelasticity : $y \equiv \frac{Q^2}{x_{Bj} s}$

Past : HERA at DESY. DIS on proton, with low luminosity. Next decade : Electron-lon-Collider (EIC) at BNL. DIS on proton and nuclei, with very high luminosity and the possibility of polarized beams.

Kinematical regimes of DIS

- For $Q^2 \rightarrow +\infty$: target more and more dilute due to DGLAP evolution. \Rightarrow QCD-improved parton model more and more valid.
- For $x_{Bj} \rightarrow 0$: target more and more dense \Rightarrow Linear BFKL evolution eventually breaks down, as well as parton picture.

Onset of nonlinear collective effects: Gluon saturation!

Regime of large gluon field, but weak coupling $\alpha_{\rm s}$

Guillaume Beuf (BP2, NCBJ)

Dipole factorization at high energy for DIS

At high energy $(x_{Bj} \rightarrow 0) \Rightarrow$ instantaneous interaction with the proton/nucleus target (Lorentz contraction)

 \Rightarrow Factorization of short-time and long-time dynamics

 $F_{T,L}(x_{Bj},Q^2) = C_{T,L}(r,Q^2) \otimes N(r,Y) + O(\alpha_s) + O(x_{Bj})$

avec $Y \sim \log(1/x_{Bj})$.

- Long time: $C_{T,L}(r, Q^2) \propto$ proba. of fluctuation of the photon into $q\bar{q}$ dipole, of size r, perturbatively calculable.
- Short time: N(r, Y) = interaction proba. of the $q\bar{q}$ dipole with the proton/nucleus target (including gluon saturation effects)

High-energy Leading Log resummation: BK Equation

N(r, Y) is non-perturbative, but its dependence in $Y \sim \log(1/x_{Bj}) \sim \log(W^2/Q^2)$ is perturbative:

Resummation of high-energy leading logs $log(1/x_{Bj})$ (LL)

 \Rightarrow Evolution equation for N(r, Y): (Balitsky-Kovchegov equation (BK))

 $\partial_Y N(r, Y) = \alpha_s K_1 \otimes N(r, Y) - \alpha_s K_2 \otimes N(r, Y) \otimes N(r, Y)$

- Linear term (BFKL) \Rightarrow fast growth at large Y (small x_{Bj})
- Nonlinear damping term $\Rightarrow N(r, Y) \leq 1$: gluon saturation

Only needs an initial condition N(r, Y = 0): fit on DIS data (now HERA, EIC in the future)

N(r, Y) determines other observables

- In DIS at low x_{Bj} (HERA, EIC): diffractive, exclusive, semi-inclusive, ...
- In high energy proton-proton (pp) or proton-nucleus (pA) collisions (LHC, RHIC)
- Ex: Single inclusive hadron production at forward rapidity y in pp or pA:

$$\frac{d\sigma}{dy\,d^2\mathbf{p}_{\perp}} = PDF \otimes N(r, \mathbf{Y}) \otimes FF$$

Hybrid factorization : collinear and dipole

N(r, Y) and gluon saturation physics also determine the dynamics of the earliest stage of relativistic heavy ion collisions, at LHC or RHIC

 \Rightarrow Initial conditions for the formation of the quark-gluon plasma

Gluon saturation phenomenology at LO+LL

- Fits of *N*(*r*, *Y*) on DIS structure functions data from HERA, using the LO dipole factorisation and the BK equation
- Comparison of theory predictions using N(r, Y) to LHC data
- (Ex. Lappi, Mäntysaari (2013))

- $\bullet\,$ State of the art: LO+LL precision \rightarrow qualitatively OK, but lacks precision
- Not enough to prove (or falsify) the onset of nonlinear dynamics of gluon saturation
- Higher order corrections required!

NLO DIS calculation: massless quark case

- Perturbative building blocks for NLO DIS: $\widetilde{\Psi}_{q\bar{q}}^{\gamma^*_{\tau,L}}$ LFWF at one loop and $\widetilde{\Psi}_{q\bar{q}g}^{\gamma^*_{\tau,L}}$ LFWF at tree-level
- UV divergences shown to cancel between q ar q and q ar q g (ightarrow Dim. Reg.)
- High-energy LL resummation at the end : BK evolution to appropriate Y > 0

G.B. (2016-2017) & Hänninen, Lappi and Paatelainen (2017) see also Balitsky and Chirilli (2011-2013)

NLO DIS fit with massless quarks

Fits of N(r, Y) using massless NLO dipole cross section and BK equation at LL (with collinear resummations)

- On HERA data for $\sigma_r ~(\simeq F_2)$
- On an estimation of the light quark contribution in the data
- G.B., Hänninen, Lappi, and Mäntysaari (2020)
 - Successful individual fits, including prediction of FL
 - But very different values for fit parameters obtained from full data or from the light quark contribution

Massive quarks known to give a sizable contribution to DIS \Rightarrow NLO corrections in the massive quark case also necessary for the desired precision

Massive quarks in low \boldsymbol{x} DIS at one loop

• *F_L* at NLO with quark masses:

G.B., Lappi and Paatelainen, Phys.Rev.D 104 (2021) 5, 056032

• *F_T* at NLO with quark masses: G.B., Lappi and Paatelainen, arXiv:2112.03158 [hep-ph]

$$\begin{split} F_{T,L}(Q^2, \mathbf{x}_{Bj}) &\propto \sum_{q\bar{q} \text{ states}} \left| \widetilde{\Psi}_{q\bar{q}}^{\gamma^*_T, L} \right|^2 N(\mathbf{x}_{01}, Y=0) \\ &+ \sum_{q\bar{q}g \text{ states}} \left| \widetilde{\Psi}_{q\bar{q}g}^{\gamma^*_T, L} \right|^2 \left[N(\mathbf{x}_{02}, 0) + N(\mathbf{x}_{21}, 0) - N(\mathbf{x}_{02}, 0) N(\mathbf{x}_{21}, 0) \right] + O(\alpha_{em} \alpha_s^2) \end{split}$$

Same general structure/method in the massive quark case as in the massless case, but significantly lengthier, and with extra complications:

Conceptual : Quark mass renormalization necessary at this order, but until now mass renormalization was not formulated in a consistent way in Light-Front perturbation theory.

Technical :

 Extra contributions in the massive case due to helicity flips
Appearance of integrals defining new special functions (generalizations of Bessel functions)

Massive quarks in low \times DIS at one loop

- F₁ at NLO with quark masses:
 - G.B., Lappi and Paatelainen, Phys.Rev.D 104 (2021) 5, 056032
- F_T at NLO with quark masses: G.B., Lappi and Paatelainen, arXiv:2112.03158 [hep-ph]

Same general structure/method in the massive quark case as in the massless case, but significantly lengthier, and with extra complications:

Conceptual : Quark mass renormalization necessary at this order, but until now mass renormalization was not formulated in a consistent way in Light-Front perturbation theory.

- Technical : Extra contributions in the massive case due to helicity flips
 - Appearance of integrals defining new special functions (generalizations of Bessel functions)

- NLO corrections including full quark mass dependence have been obtained for the DIS structure functions in the dipole factorization at low *x*_{*Bi*}.
- All the ingredients are now available to perform precise and reliable NLO fits of *N*(*r*, *Y*)
 - \Rightarrow Will allow precise predictions for other low x_{Bi} observables at EIC or LHC
- Crucial milestone towards the quantitative understanding of the nonlinear gluon saturation regime in protons and nuclei.
- Methods developed for that calculation and even intermediate results will prove useful for the NLO calculation of other observables.

< □ > < 同 > < 回 > < 回 >