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Introduction

• properties of a many-body system governed by strong interactions
→ relativistic heavy-ion collisions at RHIC and the LHC

• evolution of strongly interacting matter
→ many models/approaches needed
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Motivation

INITIAL PHASE - highly anisotropic system made mostly of gluon fields
→ the least understood phase of the collision
→ lack of a direct experimental access to it
→ initial conditions for subsequent hydrodynamic evolution

• transition between early-time dynamics and hydrodynamics

early-time dynamics hydrodynamics
- microscopic theory of non-Abelian - macroscopic effective theory based on

gauge fields universal conservation laws
- out-of-equilibrium - close to equilibrium

two possible strategies:

∗ hydrodynamics → initial dynamics
∗ initial dynamics → hydrodynamics

• impact of pre-equilibrium phase on hard probes

∗ hard probes - produced in the earliest phase through hard scatterings
∗ influence of initial dynamics on hard probes ignored for a long time

IN THIS TALK: analytical purely classical approach to the initial state

→ insight into macroscopic properties of the nuclear matter soon after the collision
→ impact of the initial phase on energy losses of hard probes
→ consistency and reliability of the approach
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Relativistic heavy-ion collision

Color Glass Condensate (CGC) - effective theory to describe a nucleus in terms of
QCD quanta

before the collision (MV model) after the collision (glasma)
- large-x partons: - valence quarks fly away

valence quarks, source partons ρ(x−, ~x⊥) - glasma fields α(τ, ~x⊥) and αi⊥(τ, ~x⊥)
- small-x partons: - glasma fields evolve in τ according to

soft gluon fields βµ(x−, ~x⊥) source-less classical YM equations
- classical Yang-Mills equations: - current dependence enters through

[Dµ, F
µν ] = Jν boundary conditions at τ = 0:

- solution: αi⊥ = βi1 + βi2, α = − ig
2

[βi1, β
i
2]

β−(x−, ~x⊥) = 0 - general solutions to CYM eqs. not known

βi(x−, ~x⊥) = θ(x−) i
g
U(~x⊥)∂iU†(~x⊥) - expansion of the glasma fields in τ :

- saturation scale Qs - UV regulator αi⊥(τ, ~x⊥) =
∑∞
n=0 τ

nαi⊥(n)(~x⊥)

- m ∼ ΛQCD - IR regulator α(τ, ~x⊥) =
∑∞
n=0 τ

nα(n)(~x⊥)

- solutions of CYM eqs. found recursively
- 0th order coefficients = boundary conditions
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Correlators of gauge potentials

• colour charge distributions within a nucleus not known
• key assumption of MV model - Gaussian averaging

〈ρa(x−, ~x⊥)ρb(y
−, ~y⊥)〉 = g2δabλ(x−, ~x⊥)δ(x− − y−)δ2(~x⊥ − ~y⊥)

λ(x−, ~x⊥) - volume density of sources

• potentials of different nuclei are uncorrelated: 〈βi1aβ
j
2b〉 = 0

Basic building block: 2-point correlator (with Wick’s theorem)

δabB
ij
n (~x⊥, ~y⊥) ≡ lim

w→0
〈βin a(x∓, ~x⊥)βjn b(y

∓, ~y⊥)〉

Bijn (~x⊥, ~y⊥) =
2

g2NcΓ̃n(~x⊥, ~y⊥)

[
exp

(
g4Nc

2
Γ̃n(~x⊥, ~y⊥)

)
− 1

]
∂ix∂

j
y γ̃n(~x⊥, ~y⊥)

Γ̃n(~x⊥, ~y⊥) and γ̃n(~x⊥, ~y⊥) - determined by modified Bessel functions

∗ geometry of the collision enters via the impact parameter ~b and the surface
charge density µ(~x⊥) (uniform or Woods-Saxon distribution)

∗ IR and UV regulators: m ∼ ΛQCD = 200 MeV and Qs = 2 GeV

→ 1-point correlators (when ~x⊥ → ~y⊥) determine quantities in Tµν

→ 2-point correlators determine glasma interaction with hard probes
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Energy density and pressure

Energy-momentum tensor:

Tµν = 2Tr
[
FµλF ν

λ +
1

4
gµνFαβFαβ

]
, Fµν =

i

g
[Dµ, Dν ]

• Tµν was found in powers of τ up to τ6 order

• various profiles of E, pT , and pL for different geometries of the collision and
different charge densities were studied

∗ left: energy density as a function of τ at η = 0 for uniform µ̄
(blue=τ2, green=τ4, red=τ6)

∗ right: transverse pressure as a function of τ̃ = τQs for Woods-Saxon
distribution
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→ proper time expansion works reasonably well for times τ̃ ∼ 0.5 (or τ ∼ 0.05 fm)
→ E, pT , and pL are smooth functions in time and space
→ sensitivity to the geometry of the collision
→ dependence on azimuthal angle and rapidity emerges → anisotropies
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Anisotropy of pL and pT

• longitudinal and transverse pressure components

pL

E
=
T 11

T 00

pT

E
=

1

2

(T 22 + T 33)

T 00

• anisotropy of the pressure components

ATL ≡
3(pT − pL)

2pT + pL

• ATL = 6 at τ = 0 and ATL = 0 in isotropic plasma
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→ approach to isotropy faster for central collisions
→ approach to isotropy faster at space points within the reaction plane

than perpendicular to it
→ approach to isotropy faster for larger rapidities
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Azimuthal flow

• Fourier coefficients of the momentum azimuthal flow

vn =

∫ 2π

0
dφ cos(nφ)P (φ)

distribution P (φ) defined as: P (φ) ≡ 1
Ω

∫
d2~x⊥ δ

(
φ− ϕ(~x⊥)

)
W (~x⊥) with

W (~x⊥) ≡
√(

T0x(~x⊥)
)2 +

(
T0y(~x⊥)

)2 and ϕ(~x⊥) = cos−1
(
T0x(~x⊥)

W (~x⊥)

)
• Fourier coefficients v1, v2 and v3 calculated as a function of impact parameter

(at fixed η = 0.1)

• Eccentricity εn determines spatial deviations from the azimuthal symmetry: we
calculated ε2 and its correlation with v2
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→ v2 and v3 are of the same order as experimental values
→ |v1| is bigger than expected
→ correlation of eccentricity ε2 and v2 → usually treated as a indication

of onset of hydrodynamic behaviour
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Angular momentum of glasma

• angular momentum at RHIC energies
- large angular momentum in non-central collisions
- spin-orbit coupling → global polarization of hyperons
- QGP is rapidly rotating system

• angular momentum at higher energies, where the glasma description is valid
(LHC energies)
- the shape and the position of the peak similar
- the result at RHIC energies ∼ 105 bigger than our results
- most of the momentum of the incoming nuclei is NOT transmitted

to the glasma
- small angular momentum of the glasma → no polarization effect at highest

collision energies
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Hard probes in glasma

Fokker-Planck equation - evolution equation on the distribution function n(t,x,p) of
hard probes interacting with a medium
→ usually applied to probes moving through QGP in equilibrium

• equilibrated QGP - a collection of fast-moving particles

• hard probe - Brownian particle:
p (probe’s momentum) � q (momentum transfer)

Fokker-Planck equation for hard probes interacting with glasma:(
D −∇ipXij(v)∇jp −∇ipY i(v)

)
n(t,x,p) = 0

Collision terms:

Xij(v) =
1

2Nc

∫ t

0
dt′〈F ia(t,x)F ja (t′,x− v(t− t′))〉, Y i(v) = Xij(v)

vj

T

color Lorentz force: F(t,x) = g(E(t,x) + v ×B(t,x))

Energy loss and momentum broadening determined through correlators of
chromodynamic fields:

−
dE

dx
=
v

T

vivj

v2
Xij(v) q̂ =

2

v

(
δij −

vivj

v2

)
Xij(v)
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Hard probes in glasma

Experiments focus on probes moving mostly perpendicularly to the beam axis
• dE

dx
- collisional energy loss - does not play a role in this domain

• q̂ - transverse momentum broadening - determines radiative energy loss
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q̂ of hard probes in glasma schematic picture of q̂ of hard probes
calculated at τ5 order for v = v⊥ = 1 moving through non-equilibrium

and then equilibrium QGP
radiative energy loss:

∆p2
T ≡

∫ tf

ti

dt q̂(t),
∆p2

T

∣∣neq

∆p2
T

∣∣eq = 0.9

→ pre-equilibrium phase gives a similar contribution to the radiative energy loss
as the equilibrium one
→ the ratio is weakly sensitive to the choice of parameters
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Summary and conclusions

• Glasma dynamics studied in the proper time expansion

• Convergence of the proper time expansion tested

• Many physical characteristics of glasma dynamics calculated

• Proper time expansion can be trusted to about τ = 0.05 fm; glasma moves
towards equilibrium within this time

• Onset of hydrodynamic-like behaviour in the glasma phase

• Angular momentum of glasma is found to be small

• Large value of the momentum broadening coefficient → significant impact of
the glasma on jet quenching
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