The earliest phase of relativistic heavy-ion collisions

Alina Czajka

National Centre for Nuclear Research - BP2

in collaboration with M. E. Carrington and St. Mrówczyński

based on: arXiv:2001:05074 arXiv:2012.03042 arXiv:2105:05327 arXiv:2112:06812

- 4 周 ト 4 戸 ト 4 戸 ト

Introduction

- properties of a many-body system governed by strong interactions \rightarrow relativistic heavy-ion collisions at RHIC and the LHC
- evolution of strongly interacting matter
 - \rightarrow many models/approaches needed

イロト イボト イヨト イヨト

Motivation

INITIAL PHASE - highly anisotropic system made mostly of gluon fields

- \rightarrow the least understood phase of the collision
- \rightarrow lack of a direct experimental access to it
- \rightarrow initial conditions for subsequent hydrodynamic evolution
 - transition between early-time dynamics and hydrodynamics

early-time dynamics	hydrodynamics
- microscopic theory of non-Abelian	- macroscopic effective theory based on
gauge fields	universal conservation laws
- out-of-equilibrium	- close to equilibrium

two possible strategies:

- * hydrodynamics \rightarrow initial dynamics
- * initial dynamics \rightarrow hydrodynamics
- impact of pre-equilibrium phase on hard probes
 - * hard probes produced in the earliest phase through hard scatterings
 - * influence of initial dynamics on hard probes ignored for a long time

IN THIS TALK: analytical purely classical approach to the initial state

- ightarrow insight into macroscopic properties of the nuclear matter soon after the collision
- \rightarrow impact of the initial phase on energy losses of hard probes
- \rightarrow consistency and reliability of the approach

イロト イポト イヨト イヨト 三日

Relativistic heavy-ion collision

Color Glass Condensate (CGC) - effective theory to describe a nucleus in terms of QCD quanta

before the collision (MV model)

- large-x partons:

valence quarks, source partons $\rho(x^-,\vec{x}_\perp)$

- small-x partons:
 - soft gluon fields $\beta^{\mu}(x^-, \vec{x}_{\perp})$
- classical Yang-Mills equations: $[D_{\mu}, F^{\mu\nu}] = J^{\nu}$
- solution:

$$\beta^{-}(x^{-}, \vec{x}_{\perp}) = 0 \beta^{i}(x^{-}, \vec{x}_{\perp}) = \theta(x^{-}) \frac{i}{a} U(\vec{x}_{\perp}) \partial^{i} U^{\dagger}(\vec{x}_{\perp})$$

- saturation scale Q_s UV regulator
- $m \sim \Lambda_{\mathrm QCD}$ IR regulator

after the collision (glasma)

- valence quarks fly away
- glasma fields $\alpha(\tau,\vec{x}_{\perp})$ and $\alpha^i_{\perp}(\tau,\vec{x}_{\perp})$
- glasma fields evolve in τ according to source-less classical YM equations
- current dependence enters through boundary conditions at $\tau = 0$:

$$\alpha^i_\perp = \beta^i_1 + \beta^i_2, \qquad \alpha = - \tfrac{ig}{2} [\beta^i_1, \beta^i_2]$$

- general solutions to CYM eqs. not known
- expansion of the glasma fields in au:

$$\begin{aligned} \alpha^{i}_{\perp}(\tau, \vec{x}_{\perp}) &= \sum_{n=0}^{\infty} \tau^{n} \alpha^{i}_{\perp(n)}(\vec{x}_{\perp}) \\ \alpha(\tau, \vec{x}_{\perp}) &= \sum_{n=0}^{\infty} \tau^{n} \alpha_{(n)}(\vec{x}_{\perp}) \end{aligned}$$

- solutions of CYM eqs. found recursively
- 0th order coefficients = boundary conditions

イロト イボト イヨト イヨト

Correlators of gauge potentials

- colour charge distributions within a nucleus not known
- key assumption of MV model Gaussian averaging

$$\langle \rho_a(x^-,\vec{x}_\perp)\rho_b(y^-,\vec{y}_\perp)\rangle = g^2\delta_{ab}\lambda(x^-,\vec{x}_\perp)\delta(x^--y^-)\delta^2(\vec{x}_\perp-\vec{y}_\perp)$$

 $\lambda(x^-, \vec{x}_\perp)$ - volume density of sources

• potentials of different nuclei are uncorrelated: $\langle \beta^i_{1a} \beta^j_{2b}
angle = 0$

Basic building block: 2-point correlator (with Wick's theorem)

$$\delta_{ab}B_n^{ij}(\vec{x}_{\perp},\vec{y}_{\perp}) \equiv \lim_{\mathbf{w}\to 0} \langle \beta_{n\,a}^i(x^{\mp},\vec{x}_{\perp})\beta_{n\,b}^j(y^{\mp},\vec{y}_{\perp}) \rangle$$

$$B_n^{ij}(\vec{x}_{\perp},\vec{y}_{\perp}) = \frac{2}{g^2 N_c \tilde{\Gamma}_n(\vec{x}_{\perp},\vec{y}_{\perp})} \left[\exp\left(\frac{g^4 N_c}{2} \; \tilde{\Gamma}_n(\vec{x}_{\perp},\vec{y}_{\perp})\right) - 1 \right] \; \partial_x^i \partial_y^j \tilde{\gamma}_n(\vec{x}_{\perp},\vec{y}_{\perp})$$

 $\tilde{\Gamma}_n(\vec{x}_\perp,\vec{y}_\perp)$ and $\tilde{\gamma}_n(\vec{x}_\perp,\vec{y}_\perp)$ - determined by modified Bessel functions

- * geometry of the collision enters via the impact parameter \vec{b} and the surface charge density $\mu(\vec{x}_{\perp})$ (uniform or Woods-Saxon distribution)
- * IR and UV regulators: $m \sim \Lambda_{
 m QCD} = 200$ MeV and $Q_s = 2$ GeV
- \rightarrow 1-point correlators (when $\vec{x}_{\perp} \rightarrow \vec{y}_{\perp})$ determine quantities in $T^{\mu\nu}$
- \rightarrow 2-point correlators determine glasma interaction with hard probes

Energy density and pressure

Energy-momentum tensor:

$$T^{\mu\nu} = 2\text{Tr}\left[F^{\mu\lambda}F_{\lambda}^{\ \nu} + \frac{1}{4}g^{\mu\nu}F^{\alpha\beta}F_{\alpha\beta}\right], \qquad \qquad F_{\mu\nu} = \frac{i}{g}[D_{\mu}, D_{\nu}]$$

- $T^{\mu\nu}$ was found in powers of τ up to τ^6 order
- various profiles of $\mathcal{E},\,p_T,$ and p_L for different geometries of the collision and different charge densities were studied
- * left: energy density as a function of τ at $\eta = 0$ for uniform $\bar{\mu}$ (blue= τ^2 , green= τ^4 , red= τ^6)
- * right: transverse pressure as a function of $\tilde{\tau}=\tau Q_s$ for Woods-Saxon distribution

- ightarrow proper time expansion works reasonably well for times $ilde{ au} \sim 0.5$ (or $au \sim 0.05$ fm)
- $\rightarrow \mathcal{E}$, p_T , and p_L are smooth functions in time and space
- \rightarrow sensitivity to the geometry of the collision
- \rightarrow dependence on azimuthal angle and rapidity emerges \rightarrow anisotropies

Anisotropy of p_L and p_T

longitudinal and transverse pressure components

$$\frac{p_L}{\mathcal{E}} = \frac{T^{11}}{T^{00}} \qquad \qquad \frac{p_T}{\mathcal{E}} = \frac{1}{2} \frac{(T^{22} + T^{33})}{T^{00}}$$

anisotropy of the pressure components

$$A_{TL} \equiv \frac{3(p_T - p_L)}{2p_T + p_L}$$

• $A_{TL} = 6$ at $\tau = 0$ and $A_{TL} = 0$ in isotropic plasma

- \rightarrow approach to isotropy faster for central collisions
- \rightarrow approach to isotropy faster at space points within the reaction plane than perpendicular to it
- \rightarrow approach to isotropy faster for larger rapidities

・ロト ・ 同ト ・ ヨト ・ ヨト

Azimuthal flow

Fourier coefficients of the momentum azimuthal flow

$$v_n = \int_0^{2\pi} d\phi \, \cos(n\phi) \, P(\phi)$$

distribution
$$P(\phi)$$
 defined as: $P(\phi) \equiv \frac{1}{\Omega} \int d^2 \vec{x}_{\perp} \, \delta \left(\phi - \varphi(\vec{x}_{\perp}) \right) W(\vec{x}_{\perp})$ with $W(\vec{x}_{\perp}) \equiv \sqrt{\left(T^{0x}(\vec{x}_{\perp}) \right)^2 + \left(T^{0y}(\vec{x}_{\perp}) \right)^2}$ and $\varphi(\vec{x}_{\perp}) = \cos^{-1} \left(\frac{T^{0x}(\vec{x}_{\perp})}{W(\vec{x}_{\perp})} \right)$

- Fourier coefficients v_1 , v_2 and v_3 calculated as a function of impact parameter (at fixed $\eta = 0.1$)
- Eccentricity
 ϵ_n determines spatial deviations from the azimuthal symmetry: we calculated
 ϵ₂ and its correlation with
 v₂

- $ightarrow v_2$ and v_3 are of the same order as experimental values
- $ightarrow |v_1|$ is bigger than expected
- \rightarrow correlation of eccentricity ϵ_2 and $v_2 \rightarrow$ usually treated as a indication of onset of hydrodynamic behaviour

A. Czajka (NCBJ, BP2)

The earliest phase of relativistic heavy-ion collisions

angular momentum at RHIC energies

- large angular momentum in non-central collisions
- spin-orbit coupling \rightarrow global polarization of hyperons
- QGP is rapidly rotating system
- angular momentum at higher energies, where the glasma description is valid (LHC energies)
 - the shape and the position of the peak similar
 - the result at RHIC energies $\sim 10^5$ bigger than our results
 - most of the momentum of the incoming nuclei is NOT transmitted to the glasma
 - small angular momentum of the glasma \rightarrow no polarization effect at highest collision energies

< ロ > < 同 > < 三 > < 三 >

Hard probes in glasma

Fokker-Planck equation - evolution equation on the distribution function $\mathsf{n}(\mathsf{t},x,p)$ of hard probes interacting with a medium

 \rightarrow usually applied to probes moving through QGP in equilibrium

- equilibrated QGP a collection of fast-moving particles
- hard probe Brownian particle:

 $p \text{ (probe's momentum)} \gg q \text{ (momentum transfer)}$

Fokker-Planck equation for hard probes interacting with glasma:

$$\left(D - \nabla_p^i X^{ij}(\mathbf{v}) \nabla_p^j - \nabla_p^i Y^i(\mathbf{v})\right) n(t, \mathbf{x}, \mathbf{p}) = 0$$

Collision terms:

$$X^{ij}(\mathbf{v}) = \frac{1}{2N_c} \int_0^t dt' \langle F_a^i(t, \mathbf{x}) F_a^j(t', \mathbf{x} - \mathbf{v}(t - t')) \rangle, \qquad Y^i(\mathbf{v}) = X^{ij}(\mathbf{v}) \frac{v^j}{T}$$

color Lorentz force: $\mathbf{F}(t,\mathbf{x}) = g(\mathbf{E}(t,\mathbf{x}) + \mathbf{v} \times \mathbf{B}(t,\mathbf{x}))$

Hard probes in glasma

Experiments focus on probes moving mostly perpendicularly to the beam axis

- $\frac{dE}{dx}$ collisional energy loss does not play a role in this domain
- \hat{q} transverse momentum broadening determines radiative energy loss

 \hat{q} of hard probes in glasma calculated at τ^5 order for $v=v_{\perp}=1$

radiative energy loss:

$$\hat{q}_{m}$$
 \hat{q}_{t}
 \hat{q}
 \hat{q}
 \hat{q}_{t}
 \hat{q}
 \hat{q}_{t}
 \hat{q}_{t}
 \hat{q}
 \hat{q}_{t}
 \hat{q}_{t}
 $\hat{q$

schematic picture of \hat{q} of hard probes moving through non-equilibrium and then equilibrium QGP

$$\Delta p_T^2 \equiv \int_{t_i}^{t_f} dt \, \hat{q}(t), \qquad \qquad \frac{\Delta p_T^2}{\Delta p_T^2} \Big|^{\text{req}} = 0.9$$

- \rightarrow pre-equilibrium phase gives a similar contribution to the radiative energy loss as the equilibrium one
- ightarrow the ratio is weakly sensitive to the choice of parameters

1 440

- Glasma dynamics studied in the proper time expansion
- Convergence of the proper time expansion tested
- Many physical characteristics of glasma dynamics calculated

- Proper time expansion can be trusted to about $\tau=0.05$ fm; glasma moves towards equilibrium within this time
- Onset of hydrodynamic-like behaviour in the glasma phase
- Angular momentum of glasma is found to be small
- Large value of the momentum broadening coefficient \rightarrow significant impact of the glasma on jet quenching

イロト イボト イヨト イヨト