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Outline

Modifications of the isotropic model describing the space-time
geometry of the earliest Universe:

I H. Bergeron, E. Czuchry, J.-P. Gazeau, P. Małkiewicz, Integrable
Toda system as a quantum approximation to the anisotropy of the
mixmaster universe, Phys. Rev. D 98 083512 (2018).

I E. Czuchry, Quantum Toda-like regularisation of the Mixmaster
anisotropy, J. Phys. Conf. Ser (2018), Proceedings of the 32nd
International Colloquium on Group Theoretical Methods in Physics,
accepted.

Going beyond General Relativity in order to avoid the initial
singularity (the so-called Bing-Bang) problem:

I N. A. Nilsson and E. Czuchry, Horava-Lifshitz cosmology in light of
new data, Phys. Dark Universe (2018), accepted, in production.
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ΛCDM model

The ΛCDM (Lambda cold dark matter) model is is successfully used to
describe the data of observational cosmology, namely

the cosmic microwave background fluctuations
the large-scale structure in the distribution of galaxies
the observed accelerating expansion of the Universe
the abundances of hydrogen (including deuterium), helium, and
lithium

Figure: Microwave Sky: The detailed, all-sky picture created from nine years
of WMAP data (NASA/WMAP Science Team).
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FRW geometry

The ΛCDM model uses the Friedmann-Robertson-Walker (FRW)
metric and the Friedmann equations to describe the observable
universe. The FRW metric is an exact solution of Einstein’s field
equations of general relativity; it describes a homogeneous, isotropic
expanding or contracting universe .

Figure: Closed, open and flat two-dimensional geometries (NASA/WMAP
Science Team).
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Limitations of the FRW geometry

The FRW model is used as a first approximation for the evolution of the
real universe because it is simple to calculate.

It seems that the observable universe is well approximated by an
almost FRW model, i.e. a model which follows the FRW metric apart
from primordial density fluctuations. However

The isotropy of space is dynamically unstable towards the
big-bang singularity1.
Therefore an anisotropic model, comprising the Friedmann model
as a particular case, is expected to be better suited for describing
the earliest Universe.
Mixmaster universe, Bianchi IX model, has sufficient generality.

1V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 19, 525 (1970).
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Mixmaster universe
The canonical description of the Bianchi-type IX model is given in
terms of Misner’s variables2.

In this approach the dynamics resembles motion of a particle in a
three-dimensional Minkowskian space-time and in a
space-and-time-dependent confining potential.
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Figure: The plot of Bianchi IX potential near its minimum.

2C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969); Phys. Rev. 186, 1319 (1969).
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Mixmaster universe

The respective Hamiltonian constraint in the Misner variables3.
reads:

C =
Ne−3Ω

24

(
2κ
V0

)2
(
−p2

Ω + p2 + 36
(
V0

2κ

)3

n2e4Ω[V (β)− 1]

)
,

where the spacetime variables (Ω, β+, β−) have the cosmological
interpretation.
The potential that drives the motion of the geometry represents
the spatial curvature 3R.:

V (β) =
e4β+

3

[(
2 cosh(2

√
3β−)− e−6β+

)2
− 4
]

+ 1 .

3C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969); Phys. Rev. 186, 1319 (1969).
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Weyl-Heisenberg integral quantization

The so-called canonical quantization works sufficiently well for the
basic observables and many typical Hamiltonians.
It it less suitable for more complex observables, in particular, when
the latter admit some sort of singularities.
The three channels of the anisotropy potential, which narrow to
the zero width, are in a sense singular and one may expect that
the quantization should smooth out those singular features.
Weyl-Heisenberg quantization scheme is a general procedure that
in some circumstances provides conceptually better justified
quantization prescriptions than ‘canonical prescription’.
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W-H integral quantization

The Weyl-Heisenberg integral quantizationIt results in the
quantized form of the Bianchi IX potential (as a multiplication
operator)

AV (β) =
1
3

(
2D4

+D12
− e4β+ cosh 4

√
3β− − 4D+D3

−e−2β+ cosh 2
√

3β−

+D16
+ e−8β+ − 2D4

+e4β+

)
+ 1,

where D± := e
2

σ2
±

The original Bianchi IX potential V (β) ≡ V (β+, β−) is recovered
for D+ = 1 = D−, thus for weights σ+, σ− →∞ (the “limit”
Weyl-Wigner case).
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Regularized BIX potentials after quantization
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Plot of the original Bianchi IX potential V (β) and its regularized version
after quantization, near its minimum, for sample values D+ = 1.1,
D− = 1.4.

The original escape channels became regularized and the whole
potential is now fully confining.
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Regularized BIX potentials after W-H quantization

Our quantization procedure should preserve the basic properties
of the classical potential by requiring (i) the isotropy around its
minimum and (ii) keeping the position of the minimum at the point
(0,0).
Imposing those conditions yields the same result in both cases:
D+ = D−+ =: D.
The resulting potential reads as

AV (β+,β−) =
1
3

(
D16

(
2e4β+ cosh 4

√
3β− + e−8β+

)
−D4

(
4e−2β+ cosh 2

√
3β− − 2e4β+

))
+ 1
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The introduction of new variables q1, q2, q3 such that
q1 − q2 = 4

√
3β− + 4β+ and q2 − q3 = −4

√
3β− + 4β+ leads to

AV (β+,β−) =
D16

3
(
eq1−q2 + eq2−q3 + eq3−q1

)
+

− D4

3

(
e−

1
2 (q1−q2) + e−

1
2 (q2−q3) + e−

1
2 (q3−q1)

)
+ 1.

Therefore, the above potential consists of the dominating part
∼ D16, corresponding to the periodic 3-particle Toda system4

perturbed by another 3-particle Toda potential.

4M. Berry, Topics in Nonlinear Mechanics, ed. Ss Jorna, Am. Inst. Ph. Conf. Proc.
46, 16 (1978).
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The periodic Toda system is a system of N equal-mass particles
interacting via exponential forces, described by the Hamiltonian:

H =
1
2

N∑
k=1

p2
k +

N∑
k=1

e−(qk−qk+1)

with periodicity condition q0 ≡ qN and q1 ≡ qN+1.
The periodic 3-particle Toda system is the simplest nontrivial
periodic crystal consisting of three particles. The particles on the
lattice interact with the neighbor ones via exponential potential.

1

2

3

q2 − q1

q3 − q2
q1 − q3
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It is known that the Toda systems are integrable and solutions can
be derived.
The periodic 3-body Toda system has been analysed both on the
classical and quantum levels. In the literature, one may find ways
to construct classical solutions as well as the corresponding
quantum eigenfunctions and eigenvalues.
This provides an analytically solvable approximation to the
anisotropic potential of the Bianchi IX’
New possibilities to studies of the quantum dynamics of
Mixmaster.

Ewa Czuchry (BP2) Wczesny Wszechświat Świerk, 10.12.2018 14 / 26



Results described in
H. Bergeron, E. Czuchry, J.-P. Gazeau, P. Małkiewicz, Integrable
Toda system as a quantum approximation to the anisotropy of the
mixmaster universe, Phys. Rev. D 98 083512 (2018).
E. Czuchry, Quantum Toda-like regularisation of the Mixmaster
anisotropy, J. Phys. Conf. Ser (2018), Proceedings of the 32nd
International Colloquium on Group Theoretical Methods in
Physics, accepted.
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Modifications of General Relativity

General Relativity is not renormalizable:
A theory is said to be power-counting renornalizable if all of its
interaction terms scale like momentum to some non positive
power, as then Feynman diagrams are expected to be convergent
or have at most logarithmic divergence.
Renormalization at one-loop demands that GR should be
supplemented by higher-order curvature terms. However such
theories are not viable as they contain ghost degrees of freedom
The observed value for cosmological constant is smaller than the
value derived form particle physics by at best 60 orders of
magnitude.
Dark energy and dark matter: recent observational data provides
that about 95% of the Universe is made from unknown
components.
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Going beyond General Relativity

Higher dimensional spacetimes (Kaluza-Klein type theories):
One can expect that for any higher-dimensional theory, a
4-dimensional effective field theory can be derived in the low
energy limit.
Adding extra fields (or higher-order derivatives):
One can modify the gravitational action by considering more
degrees of freedom. This can be achieved by adding extra
dynamical fields or equivalently considering theories with
higher-order derivatives.
Giving up diffeomorphism invariance:
Lorentz symmetry breaking can lead to a modification of the
graviton propagator in the UV, thus rendering the theory
power-counting renormalizable.
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Existence of bounce in Hořava-Lifshitz cosmology
Hořava-Lifshitz gravity – a proposal for a UV-complete renormalizable
gravity theory – may lead to a bouncing cosmology.

Hořava proposed a model for quantum gravity which is
power-counting renormalizable and hence potentially ultra-violet
(UV) complete.
In the UV the theory possesses a fixed point with an anisotropic,
Lifshitz scaling between time and space, therefore it is referred to
as Hořava-Lifshitz gravity.
This model does not have the complete diffeomorphism invariance
of General Relativity, but the action has a fixed point in the infrared
(IR) which corresponds to GR.
The analog of the Friedmann equation in HL gravity contains a
term which scales in the same way as dark radiation in braneworld
scenarios and gives a negative contribution to the energy density.
Thus, at least in principle it is possible to obtain non-singular
cosmological evolution within HL theory.
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Hořava-Lifshitz cosmology
The equations for Hořava-Lifshitz cosmology are obtained in the low
energy limit and imposing condition of homogeneity and isotropy of the
metric.

H2 =
κ2ρ

12
+
κ4µ2Λ

32
k
a2 −

κ4µ2

64

(
Λ2 +

k2

a4

)
, (1)

Ḣ = −κ
2(ρ+ p)

8
− κ4µ2Λ

32
k
a2 +

κ4µ2

32
k2

a4 . (2)

Matter is described by the scalar field:

ϕ̈+ 3Hϕ̇+ V ′ = 0.

The significant new terms in the above equations of motion are the
(1/a4)-terms on the right-hand sides of (1) and (2). They are
reminiscent of the dark radiation term in braneworld cosmology and
are present only if the spatial curvature of the metric is non-vanishing.
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Hořava-Lifshitz cosmology
Introducing natural units 8πG = 1 = c and taking the IR limit λ = 1
reduces the analog of Friedmann equation to:(

ȧ
a

)2

=
1
3

(ρm + ρr ) +
1
3

(
3K 2

2Λa4 +
3Λ

2

)
− K

a2 .

We also define in the IR limit the canonical density parameters for the
current universe a0 = 1 (subscript 0 indicates the value as measured
today) as follows

Ω0
m =

ρm

3H2
0
, Ω0

r =
ρr

3H2
0
, Ω0

k = − K
H2

0 a2
0
,

where H0 is the Hubble parameter. Using these parameter we rewrite
Friedmann equation as follows:(

ȧ
a

)2

= H2
0

[
Ω0

ma−3 + Ω0
r a−4 + Ω0

ka−2 +
(Ω0

k )2H2
0

2Λ
a−4 +

Λ

2H2
0

]
.
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Hořava-Lifshitz cosmology
In the above Friedmann equation we encounter the term Ω2

kH2
0/2Λa4,

which is the coefficient of dark radiation.
We can conveniently express this in terms of the effective number of
neutrino species present in the BBN epoque: (Ω0

k )2H2
0

2Λ = 0.135∆NνΩ0
r .

Now, since all the density parameters have to add up to unity we have:

Ω0
m + Ω0

r + Ω0
k +

(Ω0
k )2

4 · 0.135∆NνΩ0
r

+ 0.135∆NνΩ0
r = 1,

and we can rewrite the Friedmann equation as:(
ȧ
a

)2

= H2
0

[
Ω0

ma−3 + Ω0
r a−4 + Ω0

k a−2 +
(Ω0

k )2

4 · 0.135∆NνΩ0
r

+ 0.135∆NνΩ0
r a−4

]
,

and this is the equation that we have used in our MCMC analysis of
detailed balance.
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Observational constraints
Using the Friedmann equations as a starting point we wanted to
find the parameter set which best fits the data. We used a large
updated data set with CMB (Planck), SN1a, BAO and more.

We also used a Markov-Chain Monte Carlo (MCMC) method. The
parameters were completely unconstrained but were given initial
guesses, which speeded up computation.

We introduced a Gaussian prior on one parameter: H0, derived
from the Hubble constant value, H0 = (69.6± 0.7) km s−1 Mpc−1.

During every step in the computation, the MCMC method
calculated the χ2, and in the end returns the parameter set which
minimized the χ2 function. This way, we were able to obtain
information about the posterior probability distribution without
knowing it explicitly.
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Observational constraints

Parameter DB: 1σ limits

Ω0
m 0.316± 0.0054

Ω0
k (−2.27± 0.25) · 10−3

Ω0
r (9.08± 0.10) · 10−4

Ω0
DE 0.686± 0.0053

H0 68.530± 0.413

∆Nν 0.155± 0.033

Λ
(

0.676+0.125
−0.128

)
· 10−35

Table: Constraints on the parameters, the units of H0 are km·s−1·Mpc−1 and
of Λ are s−2).
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Observational constraints
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Figure: 1,2, and 3σ contours of the curvature parameter Ω0
k and the

dimensionless Hubble parameter h under detailed balance. Solid (blue)
colour corresponds to the 1σ limit. Spatial flatness (Ω0

k = 0) is excluded at
more than 3σ.
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Hořava-Lifshitz cosmology

Our initial simulations revealed that the spatial curvature is
actually significantly different from zero.

The value of Λ ∼ 10−52m−2 and the cosmological constant in the
ΛCDM model is of the same order.

Details in:
N. A. Nilsson and E. Czuchry, Horava-Lifshitz cosmology in light of
new data, Phys. Dark Universe (2018), accepted, in production.
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Future prospects

Recently, LIGO found evidence of a binary black hole merger,
which was consistent with the prediction from general relativity for
such events. Moreover, LIGO and VIRGO have also observed a
binary neutron star which was accompanied by a short γ-ray burst.
This put strong constraints on the speed of tensorial gravitational
waves, as the difference ∆t from the speed of light c was found to
be −3 · 10−15 < ∆t/c < 7 · 10−16.
As opposed to GR, which permits only tensor metric
perturbations, alternative models of gravity have more degrees of
freedom, e.g. HL gravity allows vector and tensor modes.
Recently, the LIGO and VIRGO team reported the first ever direct
limits of the strain of scalar and vector modes at < 1.5 · 10−26 at
95%.
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