NCBJ annual seminar, 20.12.2021

Piotr Kalaczyński Warsaw Neutrino Group, BP3

Introduction

Sum

v detection in water (upgoing v_{μ} example)

How it works in a nutshell:

 ν_{μ} interacts $\rightarrow \mu^{\pm}$ is produced (background: atm. μ !)

2

3

- μ^{\pm} is charged \rightarrow polarizes water molecules
- water molecules return to ground state and re-emit light (Cherenkov radiation)

we detect it

Water Cherenkov ν telescopes

Water Cherenkov ν telescopes

Water Cherenkov ν telescopes

KM3NeT

Introduction

Summary

The KM3NeT Collaboration

Numbers:

Legend:

- 57 groups
- 17 countries •
- 4 continents

group

observer

member

8

Detectors

Introduction

Summary

Light sensors

Digital Optical Module (DOM)

acrylic glass sphere with:

- 31 3" PMTs,
- readout electronics,
- pressure gauge,
- acoustic sensonrs,

Photomultiplier Tube (PMT): converts light into electric signal

DOM arrangement

Detection Unit (DU): vertical string with 18 DOMs

Naming:

ORCA6 \leftrightarrow ORCA with 6 DUs ARCA2 \leftrightarrow ARCA with 2 DUs etc.

Detector design summary

12

Detectors: details

Detector	ARCA	ORCA
Depth	3.5 km	2.5 km
Volume	1 km ³ (1Gton)	0.007 km ³ (7Mton)
# strings	8 / 2x115	10 / 115
Topic	Astroparticle RCA*	Oscillation RCA*
Goal	v _{astro}	$m_{ m u}$ hierarchy

*RCA : Research with Cosmics in the Abyss

13

Detector size comparison

Introduction

- Cherenkov radiation
- Neutrinos

Current status and history

- First strings: 2015
- Sep 2021: $+2 \Rightarrow 8$ strings
- Next deployment: spring 2022
- Complete: summer 2030

- First string: 2017
- ORCA10: Nov 2021: $+4 \Rightarrow$ **10 strings**
 - Next deployment: winter 2022
 - Complete: spring 2028

ARCA8

Check out our celebration videos:

Route 66

<u>6 strings</u> 6 months

ARCA66

Measurements

Introduction

- Cherenkov radiation
- Neutrinos

- Measurements
- Sensitivities

Atmospheric muon flux

ORCA1 & ARCA2

RESEARCH ŚWIERK PoS(ICRC2021)1112

ORCA4

Atmospheric neutrino flux

number of events / bin

ARCA6

Neutrino oscillations

Sensitivities

Introduction

- Cherenkov radiation
- Neutrinos

Results

- Measurements
- Sensitivities

Neutrino Mass Ordering (NMO)

ORCA115

ORCA115 + JUNO

Astrophysics (supernovae)

Explosion mechanism not fully understood but we know:

- 99% of $E_{\text{grav}} \rightarrow \nu$ when γ cannot escape
- CCSN* produce MeV ν 's

ARCA115 + ORCA115

Astrophysics (supernovae)

Explosion mechanism not fully understood but we know:

- 99% of $E_{\text{grav}} \rightarrow \nu$ when γ cannot escape
- CCSN* produce MeV ν 's

ARCA115 + ORCA115

Prompt muons

ARCA115

Summary

Introduction

- Cherenkov radiation
- Neutrinos

Atmospheric μ

- First data
- Prompt μ analysi
- Multiplicity reco

The end

- ARCA & ORCA under construction
- Already outgrown ANTARES
- Succesful measurements of μ, ν fluxes, ν oscillations
- Very good sensitivity to ν_{astro} & osci
- Many analyses ongoing

The end. Thank you for listening!

To sum up:

- ARCA & ORCA under construction
- Already outgrown ANTARES
- Succesful measurements of μ, ν fluxes, ν oscillations
- Very good sensitivity to v_{astro} & osci
- Many analyses ongoing

Outlook:

- Detectors will grow further in 2022!
- New results soon!

ν effective areas JINST 16 C09034 (2021)

Neutrino sources

Michel Cribier, Michel Spiro, Daniel Vignaud, La lumière des neutrinos, Seuil (1995)

Neutrino interactions

Possible interactions:

- gravitational
- weak:

 - Charged current (CC) : $v_l + N \xrightarrow{W^{\pm}} l + X$ Neutral current (NC) : $v_l + N \xrightarrow{Z^0} v_l + X$ Elastic scattering (ES) : $v_l + N \xrightarrow{W^{\pm}/Z^0} v_l + l$
- ν oscillations

may cause Cherenkov light emission (if charged) Mixing of neutrino mass and flavour states:

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = U_{\text{PMNS}} \begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix}$$

 $U_{\rm PMNS}$ matrix:

- NOT diagonal like CKM for quarks!
- not measured as precisely as CKM

PMNS = Pontecorvo-Maki-Nakagawa-Sakata CKM = Cabibbo–Kobayashi–Maskawa

The usual parametrization of U_{PMNS} :

 $c_{ij} \equiv \cos \theta_{ij}$ $s_{ij} \equiv \sin \theta_{ij}$

 δ – CP-violating phase (charge-parity) α_1 , α_2 – Majorana phases

Cherenkov radiation

Supersonic jetplane:

https://www.quora.com/Can-a-pilot-hear-his-own-sonic-boom-when-he-slows-down-the-plane

Examples

Extensive Air Showers

eso.org

Nuclear reactors

and ...

https://www.flickr.com/photos/35734278@N05/3954062594/

Event topologies (ORCA115 MC)

Showers (NC: $v_{e,\mu,\tau}$, CC: v_e , v_τ ($\tau \not\rightarrow \mu$))

color→ time

Extensive Air Showers (EAS)

EAS:

- Caused by primary cosmic rays (CR)
- Typically start at $h \in (20,100)$ km
- 3 main components:
 - electromagnetic (EM)
 - hadronic
 - muonic

Flux categories commonly used by v telescopes:

CCSN: time resolution

dashed red lines indicate the interval to which the Fourier transform is applied

