

Through the atmosphere into the core of the neutron star

Agnieszka Majczyna Jerzy Madej, Agata Różańska, Mirosław Należyty and Bartosz Bełdycki

Equations of state (EOS) of the neutron star

An example of different equations of state of the super dense matter.

- matter, such as in neutron starwe are unable to obtain it in any Earth laboratory
- there are several methods of determination of basic parameters of NS (review eg. Bhattacharyya (2010), Miller (2013), Özel & Freire (2016))
- to strongly constrain EOS we need accurate and simultaneous mass and radius determination for neutron stars
- we develop such method based on the fitting of observed X-ray spectra of NS
- very important issue is an estimation of the accuracy of the mass and radius determination

Model atmospheres of hot neutron star (ATM24)

equation of the radiative transport

$$\begin{split} &\mu \frac{\partial I_{\mathbf{v}}}{\partial \tau_{\mathbf{v}}} = I_{\mathbf{v}} - \epsilon_{\mathbf{v}} B_{\mathbf{v}} - (1 - \epsilon_{\mathbf{v}}) J_{\mathbf{v}} + (1 - \epsilon_{\mathbf{v}}) (J_{\mathbf{v}} - B_{\mathbf{v}}) \int_{0}^{\infty} \Phi_{1}(\mathbf{v}, \mathbf{v}') d\mathbf{v}' \\ &- (1 - \epsilon_{\mathbf{v}}) \int_{0}^{\infty} (J_{\mathbf{v}'} - B_{\mathbf{v}'}) \Phi_{2}(\mathbf{v}, \mathbf{v}') d\mathbf{v}' \end{split}$$

■ hydrostatic equilibrium

$$\int_{0}^{\infty} (\kappa_{v} + \sigma_{v}) J_{v} dv = \int_{0}^{\infty} (\kappa_{v} + \sigma_{v}) S_{v} dv$$

atmosphere does not collapse, expand or pulsate

■ radiative equilibrium

$$\frac{dP_{gas}}{dz} + \frac{dP_{rad}}{dz} = -\rho g$$

only photons transport the energy

- no energy sources
- no convection
- for detailed description of the model see eg. Madej (1991); Majczyna et. al. (2005); Madej et al. (2017); Majczyna et. al. (2020)

Our theoretical spectra

- comparison of the black body spectrum with spectra with Thomson and Compton scattering
- spectrum of the atmosphere dominated by Compton scattering is harder than the black body spectrum
- maximum of our spectrum is shifted toward higher energies

Our theoretical spectra

- surface gravity modifies outgoing spectra
- spectrum for the lowest gravity is harder than this for higher gravity
- strong iron line at ~6.9 keV is clearly visible
- for lower log(g) maximum of spectrum is shifted toward higher energies

Our method of mass and radius determination

- our method is based on the fitting observed spectra by theoretical one
- we are able to determine mass and radius simultaneously
- our method is independent on the distance, which could be use to reduce errors
- this method was applied to spectra observed by RXTE eg. Kusmierek et al. (2011)

■ we use WFI/ATHENA fake spectra to show, how accurate is our method (Majczyna et al. 2020)

Athena (Advanced Telescope for High Energy Astrophysics)

It is due for launch in 2030

X-ray Integral Field Unit (X-IFU)

■ energy range: 0.2-12 keV

■ energy resolution: 2.5 eV (<7 keV)

■ field of view: 5'

■ time resolution: 10 µsec

■ effective area: 1500 cm² (@7 keV)

Wide Field Imager (WFI)

■ energy range: 0.2-15 keV

■ energy resolution: <170 eV (@7 keV)

■ time resolution: <5 msec

■ angular resolution: 5"

■ field of view: 40'×40'

Athena's fake spectrum

- our theoretical spectra with chosen parameters (M, R, T_{eff}) were convolved with the *Athena* response matrix
- these fake spectra were fitted by large grid of our theoretical models
- we expected that this fitting procedure reproduce assumed parameters
- we are able to estimate accuracy of mass and radius determination in our method

Accuracy of mass and radius determination

Accuracy of mass and radius determination

based on the method of fitting continuum spectra we determined the mass and the radius of the neutron star with the accuracy:

$$\delta M = 3-10 \%$$

 $\delta R = 2-8 \%$

■ that means that we are able to constrain the equation of state of super dense matter in the neutron star interior

THE ASTROPHYSICAL JOURNAL

Precision of Mass and Radius Determination for Neutron^{R[km]} Stars from the *ATHENA* Mission

Agnieszka Majczyna¹ (D), Jerzy Madej² (D), Mirosław Należyty² (D), Agata Różańska³ (D), and Bartosz Bełdycki³

Published 2020 January 16 • © 2020. The American Astronomical Society. All rights reserved.

The Astrophysical Journal, Volume 888, Number 2

Citation Agnieszka Majczyna et al 2020 ApJ 888 123

Summary

- after about 90 years after postulating the existence and about 70 years after discovery of the neutron star, the equation of state is still open question
- in any Earth laboratory we are unable to obtain matter, which build up neutron star
- the only way to know properties of the super dense matter are astronomical observations
- only accurate and simultaneous determination of mass and radius of the neutron star could constrain equation of state of neutron star matter
- we created and develop model atmospheres of hot neutron star (ATM24)
- we develop method of mass and radius determination based on the fitting of the theoretical spectra to the observed X-ray spectra
- we shown that we are able to determine mass with ~3-10 % accuracy and the radius with 2-8 % accuracy
- therefore we are able to strongly constrain equation of state of neutron star matter

Thank you