Quark Gluon Plasma in NA61/SHINE

Bartosz Maksiak

2019-12-10

The NA61/SHINE experiment

Two-dimensional scan at NA61/SHINE

In years 2009-2018 NA61/SHINE studied the phase diagram of strongly interacting matter by performing 2D scan in collision energy and system size

Onset of deconfinement: horn

Horn is one of the structures predicted by SMES¹ as a signature of onset of deconfinement. It was observed as rapid changes in K^+/π^+ in Pb+Pb collisions.

- p+p shows plateau-like structure
- Be+Be close to p+p
- Ar+Sc higher than p+p, but energy dependence is similar no horn

Quark Gluon Plasma in NA61/SHINE

¹M. Gazdzicki and M. I. Gorenstein Acta Phys. Polon. B30 (1999) 2705

Search for critical point: strongly intensive measures

Near the critical point (2nd order phase transition) large dynamical fluctuations may appear and manifest as non-monotonic dependence on energy, system-size or centrality of the collision.

In contrary to original expectations, so far we do not see any prominent structures that could be related to critical point.

Search for critical point: proton intermittency

- Second order phase transition may manifest in the fluctuations of local power-law of the baryon density.
- □ This can be searched by studying scaling behavior of second factorial moments $F_2(M)$ with the cell size in (p_x, p_y) space (i.e. divided onto $M \times M$ bins).

$$F_{2} = \frac{\left\langle \frac{1}{M^{2}} \sum_{m=1}^{M^{2}} n_{m}(n_{m}-1) \right\rangle}{\left\langle \frac{1}{M^{2}} \sum_{m=1}^{M^{2}} n_{m} \right\rangle^{2}}$$
(1)

at critical point power law dependence is expected

$$\Delta F_2(M) \sim (M^2)^{\phi_2} \tag{2}$$

Search for critical point: proton intermittency

In Ar+Sc collisions $F_2(M^2)$ moments are higher in data than in mixed events. More detailed investigation is ongoing. In Be+Be collisions, there is no such signal.

Damian Pszczel is one of the investigators.

Two-particle correlations in $\Delta \eta \Delta \phi$

Two-particle correlations in $\Delta\eta$, $\Delta\phi$

- Studied extensively at RHIC and LHC.
- This method allows to disentangle different sources of correlations.
 - 🗋 jets,
 - 🗅 flow,
 - resonance decays,
 - quantum statistics effects.
 - conservation laws.

Analysis performed by BM. Results from correlations in p+p already published in Eur.Phys.J. C77 (2017) no.2, 59.

Two-particle correlations - definitions

Correlations are calculated by finding the difference in pseudo-rapidity and azimuthal angle between two particles in the same event.

 $\begin{aligned} \Delta \eta &= |\eta_1 - \eta_2| \\ \Delta \phi &= |\phi_1 - \phi_2| \end{aligned}$

$$C^{raw}(\Delta\eta,\Delta\phi) = rac{N^{pairs}_{bkg}}{N^{pairs}_{signal}} rac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)};$$

 $S(\Delta\eta,\Delta\phi) = rac{d^2N^{signal}}{d\Delta\eta d\Delta\phi}; \quad B(\Delta\eta,\Delta\phi) = rac{d^2N^{bkg}}{d\Delta\eta d\Delta\phi}$

Signal and background distributions are calculated and normalized in restricted $\Delta \eta$ region: $0 < \Delta \eta < 3$. In order to make correlation functions more readable, they are mirrored around $(\Delta \eta, \Delta \phi) = (0, 0)$ point.

Example results in Be+Be - charge scan

- Maximum at (Δη, Δφ) = (0, π) (i.e. away-side) – probably resonance decays and momentum conservation.
- A hill at (0,0) (i.e. near-side) in unlike-sign (+-) is probably due to Coulomb attraction (products of γ conversion were rejected during analysis). For like-sign pairs prominent peak – Bose-Einstein statistics.
- Away-side enhancement is lower in positively charged (++) pairs due to a small number of resonances decaying into two positively charged particles (e.g. Δ⁺⁺). Almost no away-side enhancement in negatively charged (- -) pairs – low multiplicity of double-negative resonances.

Example results in Be+Be – energy scan

Example results in p+p – energy scan

Two-particle correlations in p+p

Eur.Phys.J. C77 (2017) no.2, 59

Be+Be data shows an excessive structure in $(\Delta \eta, \Delta \phi) \approx (0, 0)$ region (the region of quantum statistics effects, Coulomb interactions and jets). The results are still being discussed.

- □ The NA61/SHINE experiment finished energy and system-size scan in 2018.
- Collected data is being analyzed now and new results.
- Expect series of new results through next several years!
- □ Current plan for NA61/SHINE: update of the detector to restart after Long Shutdown 2.

Thank you

Members

- prof. Joanna Stepaniak (leader)
- 🗅 Damian Pszczel
- 🖵 Bartosz Maksiak

Activities

- □ Analysis of proton intermittency (JS, DP)
- **\Box** Analysis of two-particle correlations in $\Delta \eta \Delta \phi$ (BM)
- □ Calibration of NA61/SHINE data (DP)
- Reconstruction of NA61/SHINE data (BM)
- Participation in the CosmicWatch project (BM)

NA61/SHINE publications in 2019

Measurements of π[±], K[±] and proton double differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS.

Eur. Phys. J C79 (2019) no.2, 100

- Measurements of production and inelastic cross sections for p+C, p+Be, and p+Al at 60 GeV/c and p+C and p+Be at 120 GeV/c.
 Phys. Rev. D 100, 11201
- Two publications in the reviewing process
- Two-particle correlations in central Be+Be collisions at SPS energy (in preparation)