The power of MULTI-wavelength astrophysics: using optical-to-radio data to uncover properties of star-forming galaxies in the Universe

Katarzyna Małek BP4 (astrophysics department)

OUTLINE

- a quick introduction to the complex world of galaxies,
- panchromatic view on the galaxy and the importance of the dust (and the dust attenuation),
- new data new results.

Copyright: NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)

Credit: NASA, ESA, R. Ellis (Caltech), and the HUDF 2012 The Hubble Ultra Deep Field 2012

panchromatic view on the galaxy and the importance of the dust (and the dust attenuation)

How do we estimate physical properties of galaxies?

Dust absorbs part of the UV (0,1-0,4 μ m) radiation from young, massive stars and then **re-emits** the energy in the IR rage (IR, 8-1000 μ m).

Credit: M. Hamed

We have tools to study the galaxy evolution in cosmic time.

Do we have the data?

yes we have! new data - new results

NEW DATA HELP: the Herschel Extragalactic Legacy Project

Field	Objects	area \deg^2	XID+	photo-z	CIGALE	Blind	spec-z
AKARI-NEP	531 746	9.2	31 441	*107 228	1 239	9 848	1 243
AKARI-SEP	$844\ 172$	8.7	108 119	*139 059	566	20 169	362
Boötes	3 398 098	11.4	$495\ 159$	$1\ 570\ 512$	38 980	30 566	$23\ 424$
CDFS-SWIRE	$2\ 171\ 051$	13.0	$283\ 406$	136 944	9 308	40 880	29 063
COSMOS	2599374	5.1	25 898	$691\ 502$	15747	12 603	36 686
EGS	$1\ 412\ 613$	3.6	$223\ 598$	$1\ 182\ 503$	$4\ 159$	$9\ 551$	19 799
ELAIS-N1	$4\ 026\ 292$	13.5	269 611	2714686	49 985	34 501	4 619
ELAIS-N2	1783240	9.2	86 591	*120 723	6 798	19 483	$2\ 471$
ELAIS-S1	$1\ 655\ 564$	9.0	$194\ 276$	$1\ 013\ 582$	25 393	22743	10 396
GAMA-09	12 937 982	62.0	$1\ 386\ 659$	$8\ 833\ 874$	130 293	112 461	38 407
GAMA-12	12 369 415	62.7	1 099 477	8 569 951	108 139	112 471	$41 \ 149$
GAMA-15	$14\ 232\ 880$	61.7	$1\ 236\ 395$	10 083 210	117 234	116 436	81 413
HATLAS-NGP	6759591	177.7	$1\ 233\ 547$	$3\ 166\ 952$	185 290	344 635	$58\ 476$
HATLAS-SGP	29 790 690	294.6	$3\ 511\ 594$	$17\ 054\ 138$	352 804	497 501	47 213
HDF-N	130 679	0.67	834	*7 435	0	0	3 360
Herschel-Stripe-82	50 196 455	363.2	2976447	$21\ 509\ 448$	250 644	$232\ 589$	$132\ 358$
Lockman-SWIRE	$4\ 366\ 298$	22.4	$242\ 065$	$1\ 377\ 139$	46719	$54\ 106$	7243
SA13	9 799	0.27	812	*2 884	70	315	188
SPIRE-NEP	2674	0.13	562	*935	71	374	1
SSDF	12 661 903	111.1	$4\ 395\ 253$	9 250 727	$305\ 576$	196 895	$1\ 417$
XMM-13hr	38 629	0.76	3 563	*10 773	670	1 218	365
XMM-LSS	8 705 837	21.8	360 500	$6\ 124\ 027$	61 888	50 362	$78\ 192$
xFLS	977 148	7.4	$52\ 187$	*100 993	5944	19757	$3\ 562$
Totals:	171 602 130	1269.1	18 217 994	93 769 225	1 717 517	1 939 464	621 407
Percentages:			10.6%	54.6%	1.0%		0.4%

Shirley, Duncan, Campos Varillas, Hurley, <u>MK</u>, et al., MNRAS, 2021, Vol. 507

NEW DATA HELP: the Herschel Extragalactic Legacy Project

Shirley, Duncan, Campos Varillas, Hurley, <u>MK</u>, et al., MNRAS, 2021, Vol. 507

The discovery of a giant black hole hidden in a galaxy that existed 1,4 Gyr after the Bing Bang!

A hyperluminous obscured quasar at a redshift of z = 4.3

Efstathiou, KM et al, MNRAS, 2021

large overestimation of SFR obtained without using other wavelengths than optical to observe

Legacy Survey of Space and Time:

starting 2022 - 10 years of observations, ~60 petabytes of pictures and 15-petabytes of data, 20 terabytes of data/night

Preparing for LSST data. Estimating the physical properties of z < 2.5 main-sequence galaxies

Riccio, KM, Nanni, Hamed, Pollo et al, A&A, 2021

Astarte & Adonis (z~2, the age of the Universe at that time~3.316 Gyr).

Multiwavelength dissection of a massive heavily dust-obscured galaxy and its blue companion at z~2

M. <u>Hamed</u>, <u>KM</u> et al., A&A, 2021

The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. IV. Photometric redshifts and stellar masses

Duncan, Kondapally, Brown, Bonato, Best, .. , <u>KM</u>, et al, A&A, 2021

HELP+LOFAR HIR#radio

The bright end of the infrared luminosity functions and the abundance of hyperluminous infrared galaxies

Wang, Gao, Best, Duncan, Hardcastle, Kondapally, <u>MK</u>, McCheyne, <u>Pearson</u> et al, A&A, 2021

The strongest and cleanest (complete SPIRE250 at the level of 92%) indication that the population of HLIRGs has surface densities of ~5 to ~18/deg2. In comparison, the semi-analytic model significantly under-predicts the abundance of HLIRGs.

HELP+LOFAR FIR#radio

The nature of hyperluminous infrared galaxies

526 HLIRGs in three deep LOFAR fields

- a higher space density of ultra-massive galaxies than what was found by previous surveys or predicted via simulations.
- HLIRGs contributes more to the cosmic SFR density as redshift increases...

Gao, Wang, Efstathiou, <u>MK</u>, Best, Bonato, Farrah, Kondapally, McCheyne, Röttgering, A&A, 2021

The North Ecliptic Pole field

NEP ARARI NIR+MIR

Active galactic nuclei catalog from the AKARI NEP-Wide field

<u>Poliszczuk, Pollo, MK, Durkalec, Pearson, Goto, Kim, Malkan, Oi, Ho, Shim, Pearson Ch., Hwang, Toba, Kim E. A&A, 2021</u>

465 objects, positions, optical, near-IR and mid-IR photometry

set of supervised machine learning algorithms used to obtain a reliable AGN candidates catalog using optical+NIR data (alternative for the MIR-based selection) technique.

SUMMARY

- this year we published new state-of-art catalogues at very difficult wavelengths (infrared, radio, and mixed),
- we have found that these catalogues used together open a new window for the high-quality galaxy evolution analysis,
- we have found particularly interesting sources (as a HOT DOG at z~4.3, a pair
 of galaxies at z~2, a sample of HLIRGs at high z) but also we delivered a new
 method to analyse data from the new coming surveys (as LSST),
- taking into account the number of observed galaxies, and the number of the photometric bands, the ML techniques are now essential to use.

Thank you very much for your attention

