Search for CP, CPT symmetry violation and exotic hadrons at LHCb experiment

dr Dmytro Melnychuk, BP3

10.12.2018

D. Melnychuk LHCb experiment

LHCb experiment

- LHCb is a single arm spectrometer which uses a correlated production of bb i cc pairs.
- Detector has been designed for CP violation measurements and search for rare decays.
- Detector allows for search of exotic hadrons.

D. Melnychuk

LHCb experiment

NCBJ LHCb team

- Prof. dr hab., W. Wiślicki (kierownik zespołu, DUZ)
- In K. Klimaszewski (DUZ)
- In W. Krzemień (DBP, zakład BP3)
- In D. Melnychuk (DBP, zakład BP3)
- In A. Szabelski (DBP, zakład BP3)
- In A. Ukleja (DBP, zakład BP3)
- mgr V. Batozskaya (doktorantka)
- Imprinz. H. Giemza (DUZ)

Research topics

- Physics analyses
 - Search for CP symmetry violation in decays of charmed baryons.
 - Determination of CP violating phase in $B_s \rightarrow J/\Psi \phi$ decays.
 - CPT symmetry tests in charm decays.
 - Search for exotic hadrons
- Technical and service tasks
 - Development of DIRAC, a general-purpose Interware software for distributed computing systems.
 - Technical service and development T2-level Grid node for data production

CP violation in charmed baryons. Motivation. (A.Ukleja)

- · In charm sector CPV is expected in the SM but so far it is not discovered here
- Expected value of CPV is small ≤ 10⁻³ but predictions very widely (much smaller than in the beauty sector)

New Physics contributions can enhance CPV up to 10⁻² Int.J.Mod.Phys.A21(2006)5381 ; Ann.Rev.Nucl.Part.Sci.58(2008)249

- The crucial point is to confirm or not CPV in charm sector
- Perfect place for New Physics searching (small background from the SM)

CP violation in charmed baryons. Strategy of analysis.

- If we do not see CPV in two body decays, nature next step is go to three body decays
- Three body decays are realized via resonant states which give necessary condition to observe CPV – large strong phases difference at transitions through the maximum mass of the resonant state

$$Asym_{CP} \sim |A_1||A_2|sin(\phi_1 - \phi_2)sin(\delta_1 - \delta_2)$$

weak phases strong phases

- It motivates to use the Dalitz plot analysis (resonant states are visible) and look for localized asymmetries
- · No clear indication where CPV would appear in the Dalitz plot
- Preferable to perform searches based on techniques that are independent on amplitude modeling in the Dalitz plot:
 - ♦ binned S_{CP} method
 - ♦ unbinned kNN method

CP violation in charmed baryons. Results in Toy MC data.

- Control channel and mass sidebands do not show localized asymmetries
 - \diamondsuit no asymmetry observed in control $\Lambda^{*}_{\ c} \to p \ \text{K}^{\text{-}} \pi^{\text{+}} \text{decays}$
 - $\diamond\,$ no asymmetry observed in sidebands of $\Xi^{*}_{\,_{C}} \rightarrow p\;K^{\cdot}\pi^{*}$
- The toy MC data were used to check the sensitivity of both methods:

 There is no local asymmetries (not related to CPV) and production asymmetry is under control ⇒ the study can be unblind (EB permission is needed)

\mathcal{CP} violation measurement in $B_s^0 \rightarrow J/\psi \phi$ (V. Batozskaya, K. Klimaszewski)

- In the Standard Model (SM) CP violation arises through a single phase ϕ_s in the CKM quark mixing matrix
- Phase in the SM is predicted to be small $\phi_s^{SM} = -37.6^{+0.7}_{-0.8}$ mrad [CKMFitter, PRD 84 (2011) 033005]
- Decay $B^0_s
 ightarrow J/\psi \phi$ allows the measurement of such a phase ϕ_s

- LHCb result of φ_s performing a ~ 96 · 10³ (3 fb⁻¹) B⁰_s → J/ψ(μμ)φ(KK) decays is the most precise single measurements of quantity to date
- Combination with $B_s^0 \rightarrow J/\psi(\mu\mu)\pi^+\pi^-$ decay analysis gives $\phi_s = -10 \pm 39 \text{ mrad}$ [Phys.Rev.Lett. 114 (2015) 4, 041801]
- Measurement of ϕ_s also performed by LHCb using other B_s^0 decay modes: $D_s^+ D_s^-, \psi(2S)(\mu\mu)\phi, J/\psi KK$ in high m(KK)

Measurement of *CP* violation in $B_s^0 \rightarrow J/\psi(e^+e^-)\phi(K^+K^-)$

- *Motivation*: measure phase ϕ_s using 3 fb⁻¹ (2011-2012), similar channel to $B_s^0 \rightarrow J/\psi(\mu\mu)K^+K^-$
- Experimentally harder (Bremsstrahlung, reconstruction, trigger)
- $N_{sig}(B_s^0) \sim 12 \cdot 10^3$ that contains of 12% of muon mode
- Full analysis includes several components:
 - Sample of signal candidates
 - Angular part: θ_K, θ_e, ϕ
 - Decay time part: t_{B0}
 - Flavour tagging: B⁰_s or B⁰_s
- Paper of the analysis is under preparation

D. Melnychuk LHCb experiment

 $B_{-}^{0} = J/\psi$

Search for CPT symmetry violation with neutral flavour mesons. (A.Szabelski, W.Krzemień))

CPT theorem: Any Quantum Field Theory with locality, hermitian, Lorentz invariance must be CPT-symmetric.

Any deviation of CPT → Effects beyond the SM

Neutral flavour mesons oscillates between world of matter and antimatter:

z introduced to parametrize the CPT violation:

$$z = \frac{\delta m - \frac{i}{2}(\delta\Gamma)}{\Delta m - \frac{i}{2}\Delta\Gamma}$$

$$\delta m = M_{11} - M_{22}$$
 and $\delta \Gamma = \Gamma_{11} - \Gamma_{22}$
 $\Delta m = m_H - m_L$ and $\Delta \Gamma = \Gamma_H - \Gamma_L$

Two approaches:

- classical (z parameter as a phenomenological one)
- in the frame of the Standard Model Extension

The current PDG value B^0 : $\Re(z) = -0.04 \pm 0.04$; $\Im(z) = -0.008 \pm 0.004$. Asymmetry modulation gives access to $\Im(z)$

$$A_{CPT}^{untagged} = A_D + a_{sl}^d/2 - (a_{sl}^d/2 - A_P) \cos \Delta mt + \Im(z) \sin \Delta mt,$$

The channel under study $B^0 \to D^-(\to K^+\pi^-\pi^-)\mu^+\nu$ is estimated to give statistical of $\Im(z)$ on the level of ± 0.0006 .

Search for CPT symmetry violation in charm sector

Can be performed in LHCb e.g. in the charm sector compared to previous best limit :
 J. Link et al., Phys. Lett. B 556, 7 (2003)

LHCb

1000 times higher statistics, much smaller systematical error for D time decay

 Search for the CPT violation via the analysis of the time decay rates as a function of D meson lifetimes

 $P_f(t) \equiv |\langle f|T|D^0(t)\rangle|^2$

- The $Z^+(4050)$, $Z^+(4250)$ states have been observed by Belle experiment in $B^0 \rightarrow \chi_{c1}\pi^-K^+$ decay. Independent confirmation is desirable.
- The whole data sample from years 2011-2018 have been analyzed and the indication of these states have been observed. For definite statement an amplitude analysis is required.

Search for exotic hadrons in $B^+ \rightarrow \chi_c \pi^+ \pi^- K^+$

Ω_c states (D.Melnychuk)

- 5 Ω_c resonances have been observed by LHCb in Ξ⁺_cK⁻.
- 2 narrowest of them could be pentaquarks
- If so, they should have isospin partner decaying to Ξ⁰_cK[−] and Ξ⁺_cK_S

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300 \pm 100 \pm ~80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970 \pm 60 \pm 20$	20.4
		$< 1.2\mathrm{MeV}, 95\%~\mathrm{CL}$		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000 \pm 140 \pm 130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480 \pm 70 \pm 30$	10.4
		$< 2.6 \mathrm{MeV}, 95\%$ CL		

$$\Omega_c^- \rightarrow \Xi_c^0 K^-, \Xi_c^0 \rightarrow p K^- K^- \pi^+$$

NCBJ is T2-level Grid node for LHCb and CMS; actual performance at T1 level for LHCb

Upgrade to T1 (at least for LHCb) is ongoing

- DIRAC modules for Message Queues and Message Senders; already used in production by LHCb
- Upgrade of system pilots' communication modules
- Development of multi-threading in electromagnetic Calo software; important for reconstruction speedup in LHCb upgrade

- Continuation of CP violation search in decays of charmed and beautiful particles with increased statistics.
- Continuation of CPT violation test in charm decay.
- Search for exotic hadrons with charm and beauty quarks.
- Development of T2-level Grid node.
- Software development.