Curvature of the Universe

Jan J. Ostrowski

National Centre for Nuclear Research, Warsaw
Annual seminar of Department of Fundamental Research, 15-12-2020

Spatial curvature in the FLRW universe

Cosmic triangle: $1=\Omega_{\mathrm{m}}+\Omega_{\mathrm{k}}+\Omega_{\Lambda}$

Buchert, Ellis and van Elst, Gen. Rel. and Grav. 2009

We think that these order-of-magnitude estimates provide a strong call for a proper relativistic treatment of the underlying gravitational physics in these systems; spatial curvature is an inherently relativistic phenomenon, unknown to the Newtonian theory. The claim on the validity of a quasi-Newtonian metric (..) to describe gravitational physics on all scales in the observable Universe (...) is thus seriously called into question.

Gravitating system / Smoothing scale	Mass M	Diameters D and d	D / d	ε	$\varepsilon(D / d)^{2}$
A1: Earth's orbit / Sun	$\begin{gathered} \approx M_{\odot} \\ \left(1.99 \times 10^{30} \mathrm{~kg}\right) \end{gathered}$	$\begin{aligned} & \hline 300 \times 10^{6} \mathrm{~km} \\ & 1.39 \times 10^{6} \mathrm{~km} \end{aligned}$	216	4.24×10^{-6}	0.20
A2: Galaxy / Open star cluster	$\begin{gathered} \approx 10^{11} M_{\odot} \\ \left(1.99 \times 10^{41} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} 100000 \mathrm{ly} \\ 30 \mathrm{ly} \end{gathered}$	3333	6.23×10^{-7}	6.92
A3: Cluster of galaxies / Galaxy	$\begin{gathered} \approx 10^{14} M_{\odot} \\ \left(1.99 \times 10^{44} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} 5 \mathrm{Mpc} \\ 0.03 \mathrm{Mpc} \end{gathered}$	167	3.82×10^{-6}	0.11
$\begin{aligned} & \text { C1: Void/ } \\ & \text { Wall } \end{aligned}$	$\begin{gathered} \approx(1 / 6) \pi \rho_{m} D^{3} \\ \left(2.98 \times 10^{45} \mathrm{~kg}\right) \end{gathered}$	$\begin{aligned} & 30 h^{-1} \mathrm{Mpc} \\ & 3 h^{-1} \mathrm{Mpc} \end{aligned}$	10	6.78×10^{-6}	6.78×10^{-4}
C2: Homogeneity scale / Supercluster	$\begin{gathered} \approx(1 / 6) \pi \rho_{m} D^{3} \\ \left(2.98 \times 10^{48} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} 300 h^{-1} \mathrm{Mpc} \\ 30 h^{-1} \mathrm{Mpc} \end{gathered}$	10	6.78×10^{-4}	6.78×10^{-2}
C3: Hubble sphere /	$\begin{gathered} \approx(1 / 6) \pi \rho_{m} D^{3} \\ \left(2.38 \times 10^{52} \mathrm{~kg}\right) \end{gathered}$	$6000 h^{-1} \mathrm{Mpc}$	-	0.27	-

Spatial curvature: observational effect

Roukema, Ostrowski, Buchert; JCAP 2013

Partitioning approach

Buchert, Carfora; CQG 2002

Hamiltonian constraint, turnaround condition

Local Hamiltonian constraint:

$$
3 H^{2}=8 \pi G \rho-3 k / a^{2}+\Lambda \quad \Rightarrow \quad H^{2}=8 \pi G \rho+\sigma^{2}-\frac{1}{2} \mathcal{R}+\Lambda
$$

Turnaround condition: $H=0$

Hamiltonian constraint, turnaround condition

Local Hamiltonian constraint:

$$
3 H^{2}=8 \pi G \rho-3 k / a^{2}+\Lambda \quad \Rightarrow \quad H^{2}=8 \pi G \rho+\sigma^{2}-\frac{1}{2} \mathcal{R}+\Lambda
$$

Turnaround condition: $H=0$

Averaged Hamiltonian constraint:

$$
H_{\mathcal{D}}^{2}=8 \pi G\langle\rho\rangle_{\mathcal{D}}-\frac{1}{2} \mathcal{Q}-\frac{1}{2}\langle\mathcal{R}\rangle_{\mathcal{D}}+\Lambda
$$

where \mathcal{Q} contains kinematical effects from inhomogeneities
Turnaround condition: $H_{\mathcal{D}}=0$

Analytical results

For the turnaround to occur:

$$
\mathcal{R}>0
$$

In the case of averaged equations, we have statistically:

$$
\langle\mathcal{R}\rangle_{\mathcal{D}}>0
$$

For Einstein de-Sitter background we have:

$$
\Omega_{\mathcal{R}}^{\mathcal{D}}=-5 ; \Omega_{\mathcal{Q}}^{\mathcal{D}}=1 ; \Omega_{m}^{\mathcal{D}}=4 ; \quad \frac{\langle\rho\rangle_{\mathcal{D}}}{\rho_{E d S}}=4
$$

Numerical methods

General scheme:

- MPGRAFIC - generate initial conditions
- DTFE - calculate averaged initial conditions
- INHOMOG - calculate evolution of the domains
- RAMSES-SCALAV single pipeline + additional options

Curvature density

Averaged positive curvature

Conclusions

- big positive spatial curvature is a generic feature of collapsing structures at the turnaround; both locally and on average
- $\Omega_{\mathcal{R}}^{\mathcal{D}} \approx-5$ remains an approximate lower bound for the averaged curvature functional for the wide range of initial conditions
- fluid parameters at the turnaround may provide an additional cosmological test
- details can be found in:
\rightarrow 'A few numbers from the turnaround epoch of collapse', Ostrowski J.J., Acta Phys. Pol. B Proc. Suppl. Vol. 13, p 177 (2020)
\rightarrow 'Does spatial flatness forbid the turnaround epoch of collapsing structures?', Roukema B.F., Ostrowski J.J., Journal of Cosmology and Astroparticle Physics, Vol. 2019, 12 (2019)

