# Galaxy Mergers: Identification and Classification

William J. Pearson (BP4) Luis Suelves (BP4) Dawid Chudy (Jagiellonian) Agnieszka Pollo (BP4) Vicente Rodriguez-Gomez (IRyA) NEP Team, GAMA Team



Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research

### Why should we even care?



## Why should we even care?

- Galaxy mergers underpin our current understanding of galaxy evolution
- All galaxies have, or will have, merged at some point
- Mergers change star-formation rates and accretion onto supermassive black holes

It will happen to us...

#### Why should we even care?



## **Identifying Mergers**

- Close Pairs
  - Galaxies close on the sky and in redshift
  - Requires expensive spectroscopic observations

z=0.0339 z=0.0341

# **Identifying Mergers**

- Close Pairs
  - Galaxies close on the sky and in redshift
  - Requires expensive spectroscopic observations
- Morphological Statistics (CAS, Gini, M<sub>20</sub>, etc.)
  - Simple to obtain
  - Not always reliable, need high quality observation
- By eye
  - Hard to reproduce, not scalable

## **Deep Learning**

- Basically a series of matrix multiplications max(0, <u>wx</u>+b)
  - Just a lot of them
- Image classification is typically done with Convolutional Neural Networks (CNN/ConvNet)



### **Deep Learning**

- Basically a series of matrix multiplications max(0, <u>wx</u>+b)
  - Just a lot of them
- Image classification is typically done with Convolutional Neural Networks (CNN/ConvNet)



# Why Deep Learning?

- Vera C. Rubin Observatory and Euclid expect billions of galaxies (~1e9 galaxies)
- Human classification 30 per minute
  - 555 000 man hours (~63 years)
- Deep Learning 475 per minute
  - 35 000 GPU hours (~4 years)
- Reproducable
- Does not need expensive observations

### **North Ecliptic Pole**



Pearson et al. 2022a

### **North Ecliptic Pole**

| Redshift        | Statistic | Value |
|-----------------|-----------|-------|
| z < 0.15        | Accuracy  | 0.884 |
|                 | Recall    | 0.863 |
| 0.15 < z < 0.30 | Accuracy  | 0.850 |
|                 | Recall    | 0.790 |

| Redshift        | Total Galaxies | Non-merger | Merger<br>Candidate | Confirmed<br>Merger |
|-----------------|----------------|------------|---------------------|---------------------|
| z < 0.15        | 6965           | 5488       | 1477                | 251                 |
| 0.15 < z < 0.30 | 27 299         | 18 581     | 8718                | 1858                |

Pearson et al. 2022a

### Photometry



- "Reference" accuracy of 0.690
- Best accuracy of 0.887 with Fiber + error

 Demonstrated, for the first time, just photometry can be used to identify galaxy mergers

Suelves et al. 2022

### Classification

- Pre-merger galaxies that will "soon" merge
- Post-merger galaxies that have "recently" merged
- Lack truth Simulated galaxies (Illustris TNG)



### Classification

- Beyond pre/post-merger
- Time before or after a merger
- Lack truth Illustris TNG
  - Lack time resolution continue simulation



#### **Future Plans**

- NEP mergers
  - Environmental dependance
  - AGN enhancement
    - SFR not greatly enhanced (Pearson et al. 2022a)
- Photometry mergers
  - Test with other data
- Merger classification
  - SFR/AGN enhancement at different stages

### Summary

- Brief overview of identification methods
- Shown the power of deep learning
  - Images, Photometry, Images + morphology
- Generate catalogues ready for science
- Sneak peak of what we can do soon with these cutting edge techniques