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Belinskii-Khalatnikov-Lifshitz (BKL) conjecture

Einstein’s theory of gravity (general relativity) is known
to suffer from gravitational singularities
(incomplete geodesics and diverging invariants)
BKL conjecture states: general relativity implies existence
of generic general solution that is singular

▶ corresponds to non-zero measure subset of all initial data
▶ is stable against perturbation of initial data
▶ depends on proper number of arbitrary functions defined

on space part of spacetime

V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 31, 639 (1982)

Remarks:
▶ Evolution of spacetime that leads to BKL singularity

is called BKL scenario.
▶ BKL scenario presents a very complicated dynamics

so that to work with it one needs to use models.
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Dynamics underlying BKL scenario

The massive model of BKL scenario
Derived by V. Belinski, I. Khalatnikov, and M. Ryan in 1971; E. Czuchry and W. P., Phys. Rev. D 87, 084021 (2013)

d2 lna
dt2 =

b
a
− a2,

d2 lnb
dt2 = a2 − b

a
+

c
b
,

d2 ln c
dt2 = a2 − c

b
, (1)

where a = a(t), b = b(t), c = c(t) are effective directional scale
factors, and t is a monotonic function of proper time.

The solutions to (1) must satisfy the constraint

d lna
dt

d lnb
dt

+
d lna

dt
d ln c

dt
+

d lnb
dt

d ln c
dt

= a2 +
b
a
+

c
b
. (2)

Eqs (1)-(2) present essence of dynamics underlying BKL scenario.
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Solution to the model of BKL scenario

We have found exact solution to the dynamics (1)–(2):
P. Goldstein and W.P., Eur. Phys. J. C (2022) 82: 216

ã(t) =
3

t − t0
, b̃(t) =

30
(t − t0)3 , c̃(t) =

120
(t − t0)5 , (3)

where t > t0 and where t0 is an arbitrary real number.
The solution (3) is unstable against small perturbation:

a(t) = ã(t) + ϵα(t), (4a)

b(t) = b̃(t) + ϵβ(t), (4b)
c(t) = c̃(t) + ϵγ(t) , (4c)
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Solution to BKL scenario (cont)

Inserting (4) into (1)–(2) leads, in the first order in ϵ, to the following solution
of the resulting equations:

α(t) = exp(−θ/2)
[
K1 cos(ω1θ+φ1)+K2 cos(ω2θ+φ2)

]
+K3 exp(−2θ), (5a)

β(t) = exp(−5θ/2)
[
(4 + 6

√
6)K1 cos(ω1θ + φ1) (5b)

+ (4 − 6
√

6)K2 cos(ω2θ + φ2)
]
+ 30K3 exp(−4θ), (5c)

γ(t) =− 4 exp(−9θ/2)
[
(26 + 9

√
6)K1 cos(ω1θ + φ1) (5d)

+ (26 − 9
√

6)K2 cos(ω2θ + φ2)
]
+ 200K3 exp(−6θ) , (5e)

where θ = ln(t − t0). The two frequencies read

ω1 =
1
2

√
95 − 24

√
6, ω2 =

1
2

√
95 + 24

√
6 , (6)

where K1,K2,K3, φ1, and φ2 are constants.
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Chaotic phase of BKL scenario

The manifold M defined by {K1,K2,K3, φ1, φ2} is a submanifold of
R5. Thus, (5) presents generic solution as the measure of M is
nonzero.
The relative perturbations α/a, β/b, and γ/c grow as exp(1

2θ).
▶ The multiplier 1/2 plays the role of a Lyapunov exponent,

describing the rate of their divergences.
▶ Since it is positive, the evolution of the system towards the

gravitational singularity (θ → +∞) becomes chaotic.

Chaoticity results from strong nonlinearity of the dynamics
and growing curvature of spacetime in evolution towards
singularity.
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Chaotic phase of the BKL scenario (cont)

Parametric curve presenting growing instability of scale factors
in evolution towards singularity.
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Quantization of chaotic phase of the BKL scenario

BKL scenario can serve as sophisticated model of evolution of the
Universe near cosmological singularity. It is highly interesting to see
what happens to classical chaos at quantum level.

We quantize BKL scenario by making use of integral quantization
method (which we develop in our Department).
We do not quantize Hamilton’s dynamics, but the solution
to the BKL scenario (presented earlier).
We quantize both temporal and spatial variables to support
general covariance of GR with respect to transformations
of these variables.
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Quantization of the BKL scenario (cont)

Outline of calculations
For details, see: A. Góźdź, A. Pȩdrak, and W.P., arXiv:2204.11274 [gr-qc].

We calculate variances of quantum observables corresponding
to perturbed {a,b, c} and unperturbed {ã, b̃, c̃} solutions.
Variances describe stochastic deviations (quantum smearing)
from expectation values of quantum observables.

We have described quantum instabilities as follows

κk :=
var(ξ̂k ; Ψpert)− var(ξ̂k ; Ψunpert)

var(ξ̂k ; Ψunpert)
, k = a,b, c (7)

where ξ̂a := â, ξ̂b := b̂, ξ̂c := ĉ.
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Stochastic aspects of quantum evolution

Figure: Parametric curve of relative quantum instabilities.
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Conclusions

Evolution of classical gravitational system towards generic
singularity is chaotic.
The corresponding quantum evolution is definitely stochastic.
Nonlinearity of singular classical dynamics may create
deterministic chaos.
Non-vanishing variances of observables of the corresponding
quantum dynamics may create stochastic chaos.
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Thank you!
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Variance of quantum observable

Variance is a stochastic deviation from expectation value of quantum
observable; it determines the value of smearing of quantum
observable.
The variance is the average of the squared differences from the mean.
In the quantum state labelled by ψ, the variance is defined to be

var(Â;ψ) := ⟨(Â − ⟨Â;ψ⟩)2;ψ⟩ = ⟨Â2;ψ⟩ − ⟨Â;ψ⟩2 , (8)

where ⟨B̂;ψ⟩ := ⟨ψ|B̂|ψ⟩.
If Â is a self-adjoint operator, we have the important statement:(

var(Â;ψ) = 0
)
⇐⇒

(
Âψ = λψ, λ ∈ R

)
, (9)

i.e., the variance of the operator Â equals zero, if and only if,
the quantum system is in an eigenstate of the operator Â.
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