Towards resolving gravitational singularities problem

Włodzimierz Piechocki

Theoretical Physics Division
Department of Fundamental Research

Annual Department Seminar

Introduction

- 1922, Friedmann's solution to Einstein's equations
- assumes isotropy and homogeneity of space
- solution includes gravitational singularity (gravitational and matter fields invariants diverge)
- commonly used in astrophysics and cosmology
- 1946, discovery by Lifshitz that isotropy is unstable in the evolution towards the singularity ${ }^{1}$
- In late 50-ties relativists (USSR, USA) started examination of models with homogeneous space
- Belinskii-Khalatnikov-Lifshitz (BKL) conjecture: GR implies the existence of generic solution that is singular ${ }^{2}$
- corresponds to non-zero measure subset of all initial data
- is stable against perturbation of initial data
- depends on arbitrary functions defined on space

[^0]
Introduction

- 1922, Friedmann's solution to Einstein's equations
- assumes isotropy and homogeneity of space
- solution includes gravitational singularity (gravitational and matter fields invariants diverge)
- commonly used in astrophysics and cosmology

Introduction

- 1922, Friedmann's solution to Einstein's equations
- assumes isotropy and homogeneity of space
- solution includes gravitational singularity (gravitational and matter fields invariants diverge)
- commonly used in astrophysics and cosmology
- 1946, discovery by Lifshitz that isotropy is unstable in the evolution towards the singularity ${ }^{1}$
- In late 50-ties relativists (USSR, USA) started examination
of models with homogeneous space
- Belinskii-Khalatnikov-Lifshitz (BKL) conjecture: GR implies the existence of generic solution that is singular²
- corresponds to non-zero measure subset of all initial data
- is stable against perturbation of initial data
- depends on arbitrary functions defined on space

[^1]
Introduction

- 1922, Friedmann's solution to Einstein's equations
- assumes isotropy and homogeneity of space
- solution includes gravitational singularity (gravitational and matter fields invariants diverge)
- commonly used in astrophysics and cosmology
- 1946, discovery by Lifshitz that isotropy is unstable in the evolution towards the singularity ${ }^{1}$
- In late 50-ties relativists (USSR, USA) started examination of models with homogeneous space
- Belinskii-Khalatnikov-Lifshitz (BKL) conjecture: GR implies the existence of generic solution that is singular ${ }^{2}$
- corresponds to non-zero measure subset of all initial data
- is stable against perturbation of initial data
- depends on arbitrary functions defined on space

[^2]
Introduction

- 1922, Friedmann's solution to Einstein's equations
- assumes isotropy and homogeneity of space
- solution includes gravitational singularity (gravitational and matter fields invariants diverge)
- commonly used in astrophysics and cosmology
- 1946, discovery by Lifshitz that isotropy is unstable in the evolution towards the singularity ${ }^{1}$
- In late 50-ties relativists (USSR, USA) started examination of models with homogeneous space
- Belinskii-Khalatnikov-Lifshitz (BKL) conjecture: GR implies the existence of generic solution that is singular ${ }^{2}$
- corresponds to non-zero measure subset of all initial data
- is stable against perturbation of initial data
- depends on arbitrary functions defined on space

[^3]
General remarks

- BKL conjecture concerns both cosmological and astrophysical singularities
- low energy limits of bosonic sectors of superstring models are consistent with BKL scenario ${ }^{3}$
- Penrose-Hawking's singularity theorems (of 60-ties): possible existence of incomplete geodesics in spacetime; needn't imply that the invariants diverge; these theorems say nothing about the dynamics of gravitational field near singularities
- the existence of generic singularities in solutions to Einstein's equations
- signal the existence of the limit of validity of GR
- give support to observed black holes and big bang singularities
- hypothesis: quantization of GR may lead to the theory that is devoid of singularities so that it could be used to explain observational data

General remarks

- BKL conjecture concerns both cosmological and astrophysical singularities
- low energy limits of bosonic sectors of superstring models are consistent with BKL scenario ${ }^{3}$
- Penrose-Hawking's singularity theorems (of 60-ties): possible existence of incomplete geodesics in spacetime; needn't imply that the invariants diverge; these theorems say nothing about the dynamics of gravitational field near singularities
- the existence of generic singularities in solutions to Einstein's equations
- signal the existence of the limit of validity of GR
- hypothesis: quantization of GR may lead to the theory that is devoid of singularities so that it could be used to explain observational data

[^4]
General remarks

- BKL conjecture concerns both cosmological and astrophysical singularities
- low energy limits of bosonic sectors of superstring models are consistent with BKL scenario ${ }^{3}$
- Penrose-Hawking's singularity theorems (of 60-ties): possible existence of incomplete geodesics in spacetime; needn't imply that the invariants diverge; these theorems say nothing about the dynamics of gravitational field near singularities
- the existence of generic singularities in solutions to Einstein's equations
- signal the existence of the limit of validity of GR
\square observational data

[^5]
General remarks

- BKL conjecture concerns both cosmological and astrophysical singularities
- low energy limits of bosonic sectors of superstring models are consistent with BKL scenario ${ }^{3}$
- Penrose-Hawking's singularity theorems (of 60-ties): possible existence of incomplete geodesics in spacetime; needn't imply that the invariants diverge; these theorems say nothing about the dynamics of gravitational field near singularities
- the existence of generic singularities in solutions to Einstein's equations
- signal the existence of the limit of validity of GR
- give support to observed black holes and big bang singularities
\square devoid of singularities so that it could be used to explain observational data

[^6]
General remarks

- BKL conjecture concerns both cosmological and astrophysical singularities
- low energy limits of bosonic sectors of superstring models are consistent with BKL scenario ${ }^{3}$
- Penrose-Hawking's singularity theorems (of 60-ties): possible existence of incomplete geodesics in spacetime; needn't imply that the invariants diverge; these theorems say nothing about the dynamics of gravitational field near singularities
- the existence of generic singularities in solutions to Einstein's equations
- signal the existence of the limit of validity of GR
- give support to observed black holes and big bang singularities
- hypothesis: quantization of GR may lead to the theory that is devoid of singularities so that it could be used to explain observational data

[^7]
The BKL scenario

The dynamics that underlies the BKL conjecture, called the BKL scenario, is the following

$$
\begin{gather*}
\frac{d^{2} \ln a}{d \tau^{2}}=\frac{b}{a}-a^{2}, \quad \frac{d^{2} \ln b}{d \tau^{2}}=a^{2}-\frac{b}{a}+\frac{c}{b}, \quad \frac{d^{2} \ln c}{d \tau^{2}}=a^{2}-\frac{c}{b}, \tag{1}\\
\frac{d \ln a}{d \tau} \frac{d \ln b}{d \tau}+\frac{d \ln a}{d \tau} \frac{d \ln c}{d \tau}+\frac{d \ln b}{d \tau} \frac{d \ln c}{d \tau}=a^{2}+\frac{b}{a}+\frac{c}{b} . \tag{2}
\end{gather*}
$$

where $a=a(\tau), b=b(\tau), c=c(\tau)$ are directional scale factors.
Eqs. 1)-(2) define a highly nonlinear coupled system of equations.
These equations have been given to me by Vladimir Belinski (2010)
and ... I decided to quantize this dynamics to see if quantization may
resolve the generic cosmological singularity of general relativity.

The BKL scenario

The dynamics that underlies the BKL conjecture, called the BKL scenario, is the following

$$
\begin{gather*}
\frac{d^{2} \ln a}{d \tau^{2}}=\frac{b}{a}-a^{2}, \quad \frac{d^{2} \ln b}{d \tau^{2}}=a^{2}-\frac{b}{a}+\frac{c}{b}, \quad \frac{d^{2} \ln c}{d \tau^{2}}=a^{2}-\frac{c}{b} \tag{1}\\
\frac{d \ln a}{d \tau} \frac{d \ln b}{d \tau}+\frac{d \ln a}{d \tau} \frac{d \ln c}{d \tau}+\frac{d \ln b}{d \tau} \frac{d \ln c}{d \tau}=a^{2}+\frac{b}{a}+\frac{c}{b} \tag{2}
\end{gather*}
$$

where $a=a(\tau), b=b(\tau), c=c(\tau)$ are directional scale factors.
Eqs. 1)-(2) define a highly nonlinear coupled system of equations.
These equations have been given to me by Vladimir Belinski (2010) and ... I decided to quantize this dynamics to see if quantization may resolve the generic cosmological singularity of general relativity.

Hamilton's dynamics underlying the BKL scenario

Making use of the reduced phase space technique ${ }^{4}$ enables rewriting the dynamics (1)-(2) in the form of the Hamiltonian system:

$$
\begin{align*}
d q_{1} / d t & =\partial H / \partial p_{1}=\left(p_{2}-p_{1}+t\right) / 2 F \tag{3}\\
d q_{2} / d t & =\partial H / \partial p_{2}=\left(p_{1}-p_{2}+t / 2 F\right. \tag{4}\\
d p_{1} / d t & =-\partial H / \partial q_{1}=\left(2 e^{2 q_{1}}-e^{q_{2}-q_{1}} / F\right. \tag{5}\\
d p_{2} / d t & =-\partial H / \partial q_{2}=-1+e^{q_{2}-q_{1}} / F \tag{6}
\end{align*}
$$

where $H\left(q_{1}, q_{2} ; p_{1}, p_{2} ; t\right):=-q_{2}-\ln F\left(q_{1}, q_{2}, p_{1}, p_{2}, t\right)$, and where

$$
\begin{equation*}
F:=-e^{2 q_{1}}-e^{q_{2}-q_{1}}-\frac{1}{4}\left(p_{1}^{2}+p_{2}^{2}+t^{2}\right)+\frac{1}{2}\left(p_{1} p_{2}+p_{1} t+p_{2} t\right)>0 \tag{7}
\end{equation*}
$$

[^8]
Hamilton's dynamics underlying the BKL scenario

Making use of the reduced phase space technique ${ }^{4}$ enables rewriting the dynamics (1)-(2) in the form of the Hamiltonian system:

$$
\begin{align*}
& d q_{1} / d t=\partial H / \partial p_{1}=\left(p_{2}-p_{1}+t\right) / 2 F, \tag{3}\\
& d q_{2} / d t=\partial H / \partial p_{2}=\left(p_{1}-p_{2}+t / 2 F,\right. \tag{4}\\
& d p_{1} / d t=-\partial H / \partial q_{1}=\left(2 e^{2 q_{1}}-e^{q_{2}-q_{1}} / F,\right. \tag{5}\\
& d p_{2} / d t=-\partial H / \partial q_{2}=-1+e^{q_{2}-q_{1}} / F, \tag{6}
\end{align*}
$$

where $H\left(q_{1}, q_{2} ; p_{1}, p_{2} ; t\right):=-q_{2}-\ln F\left(q_{1}, q_{2}, p_{1}, p_{2}, t\right)$, and where

$$
\begin{equation*}
F:=-e^{2 q_{1}}-e^{q_{2}-q_{1}}-\frac{1}{4}\left(p_{1}^{2}+p_{2}^{2}+t^{2}\right)+\frac{1}{2}\left(p_{1} p_{2}+p_{1} t+p_{2} t\right)>0 . \tag{7}
\end{equation*}
$$

Hamiltonian is not of polynomial-type so that canonical quantization cannot be applied.

[^9]
Quantization of BKL scenario

How to quantize a non-polynomial Hamiltonian if canonical approach is useless?

Answer: try to use coherent states approach

- J. P. Gazeau and WP, J. Phys. A 37, 6977 (2004), "Asymptotic coherent states quantization of a particle in de Sitter space."
- A. Góźdź, WP, and G. Plewa, Eur. Phys. J. C (2019) 79:45, "Quantum Belinski-Khalatnikov-Lifshitz scenario."
- A. Góźdź, WP, and T. Schmitz, Eur. Phys. J. Plus, 2020, in press, "Dependence of the affine coherent states quantization on the parametrization of the affine group"

Quantization of BKL scenario

How to quantize a non-polynomial Hamiltonian if canonical approach is useless?

Answer: try to use coherent states approach

- J. P. Gazeau and WP, J. Phys. A 37, 6977 (2004), "Asymptotic coherent states quantization of a particle in de Sitter space."

- A. Góźdź, WP, and T. Schmitz, Eur. Phys. J. Plus, 2020, in press, "Dependence of the affine coherent states quantization on the parametrization of the affine group"

Quantization of BKL scenario

How to quantize a non-polynomial Hamiltonian if canonical approach is useless?

Answer: try to use coherent states approach

- J. P. Gazeau and WP, J. Phys. A 37, 6977 (2004), "Asymptotic coherent states quantization of a particle in de Sitter space."
- A. Góźdź, WP, and G. Plewa, Eur. Phys. J. C (2019) 79:45, "Quantum Belinski-Khalatnikov-Lifshitz scenario."
- A. Góźdź, WP, and T. Schmitz, Eur. Phys. J. Plus, 2020, in press, "Dependence of the affine coherent states quantization on the parametrization of the affine group"

Quantum dynamics

Making use of the coherent states quantization we have found the self-adjoint quantum Hamiltonian \hat{H} corresponding to the classical one. Thus, the quantum evolution has been defined by the Schrödinger equation:

$$
\begin{equation*}
i \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}(t)|\psi(t)\rangle \tag{8}
\end{equation*}
$$

where $|\psi\rangle \in L^{2}\left(\mathbb{R}_{+}, d \nu(x)\right)$, Hilbert space of our system, with $d \nu(x)=d x / x$, and where $\mathbb{R}_{+}:=\{x \in \mathbb{R} \mid x>0\}$.

Quantum dynamics

Making use of the coherent states quantization we have found the self-adjoint quantum Hamiltonian \hat{H} corresponding to the classical one. Thus, the quantum evolution has been defined by the Schrödinger equation:

$$
\begin{equation*}
i \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}(t)|\psi(t)\rangle \tag{8}
\end{equation*}
$$

where $|\psi\rangle \in L^{2}\left(\mathbb{R}_{+}, d \nu(x)\right)$, Hilbert space of our system, with $d \nu(x)=d x / x$, and where $\mathbb{R}_{+}:=\{x \in \mathbb{R} \mid x>0\}$.

Quantum dynamics near singularity

Near the gravitational singularity, the classical Hamiltonian simplifies so that the Schrödinger equation takes the form:

$$
\begin{equation*}
i \frac{\partial}{\partial t} \Psi\left(t, x_{1}, x_{2}\right)=\left(i \frac{\partial}{\partial x_{2}}-\frac{i}{2 x_{2}}-K\left(t, x_{1}, x_{2}\right)\right) \Psi\left(t, x_{1}, x_{2}\right) \tag{9}
\end{equation*}
$$

where
$K=\frac{1}{A_{\Phi_{1}} A_{\Phi_{2}}} \int_{0}^{\infty} \frac{d p_{1}}{p_{1}^{2}} \int_{0}^{\infty} \frac{d p_{2}}{p_{2}^{2}} \ln \left(F_{0}\left(t, \frac{p_{1}}{x_{1}}, \frac{p_{2}}{x_{2}}\right)\right)\left|\Phi_{1}\left(x_{1} / p_{1}\right)\right|^{2}\left|\Phi_{2}\left(x_{2} / p_{2}\right)\right|^{2}$
and where

$$
\begin{equation*}
F_{0}\left(t, p_{1}, p_{2}\right):=p_{1} p_{2}-\frac{1}{4}\left(t-p_{1}-p_{2}\right)^{2} \tag{10}
\end{equation*}
$$

Resolution of singularity

The general solution to our Schrödinger equation (9) reads
$\Psi=\eta\left(x_{1}, x_{2}+t-t_{0}\right) \sqrt{\frac{x_{2}}{x_{2}+t-t_{0}}} \exp \left(i \int_{t_{0}}^{t} K\left(t^{\prime}, x_{1}, x_{2}+t-t^{\prime}\right) d t^{\prime}\right)$,
where $\eta\left(x_{1}, x_{2}\right):=\Psi\left(t_{0}, x_{1}, x_{2}\right)$ is the initial state.
One gets

Resolution of singularity

The general solution to our Schrödinger equation (9) reads
$\Psi=\eta\left(x_{1}, x_{2}+t-t_{0}\right) \sqrt{\frac{x_{2}}{x_{2}+t-t_{0}}} \exp \left(i \int_{t_{0}}^{t} K\left(t^{\prime}, x_{1}, x_{2}+t-t^{\prime}\right) d t^{\prime}\right)$,
where $\eta\left(x_{1}, x_{2}\right):=\Psi\left(t_{0}, x_{1}, x_{2}\right)$ is the initial state.
One gets

$$
\begin{equation*}
\langle\Psi(t) \mid \Psi(t)\rangle=\int_{0}^{\infty} \frac{d x_{1}}{x_{1}} \int_{t_{H}}^{\infty} \frac{d x_{2}}{x_{2}}\left|\eta\left(x_{1}, x_{2}\right)\right|^{2} \tag{13}
\end{equation*}
$$

so that the probability amplitude is time independent, which implies that the quantum evolution is unitary.
One can show that it is continuous at $t=0$, which means that we are dealing with quantum bounce at $t=0$ (that marks the classical

Resolution of singularity

The general solution to our Schrödinger equation (9) reads
$\psi=\eta\left(x_{1}, x_{2}+t-t_{0}\right) \sqrt{\frac{x_{2}}{x_{2}+t-t_{0}}} \exp \left(i \int_{t_{0}}^{t} K\left(t^{\prime}, x_{1}, x_{2}+t-t^{\prime}\right) d t^{\prime}\right)$,
where $\eta\left(x_{1}, x_{2}\right):=\Psi\left(t_{0}, x_{1}, x_{2}\right)$ is the initial state.
One gets

$$
\begin{equation*}
\langle\Psi(t) \mid \Psi(t)\rangle=\int_{0}^{\infty} \frac{d x_{1}}{x_{1}} \int_{t_{H}}^{\infty} \frac{d x_{2}}{x_{2}}\left|\eta\left(x_{1}, x_{2}\right)\right|^{2} \tag{13}
\end{equation*}
$$

so that the probability amplitude is time independent, which implies that the quantum evolution is unitary.
One can show that it is continuous at $t=0$, which means that we are dealing with quantum bounce at $t=0$ (that marks the classical singularity).

Prospects: quantization of interior of black hole

- isotropic BH s, can be done
- quantum shell model (Minkowski+shell+Schwarzschild) ${ }^{5}$
- classical Oppenheimer-Snyder (FRW+Sch), classical Lemaître-Tolman-Bondi (LTB+Sch) ${ }^{6}$
- quantum FRW+Sch model ${ }^{7}$.
- quantum LTB+Sch model ${ }^{8}$
- anisotropic BHs, challenge
- Bianchi-type (inside) + Sch-like (outside), in progress
- BKL (inside) + Sch-like (outside), in progress
- radiation of GWs in cases of BIX and BKL, in progress

```
\({ }^{5}\) A. Góźdź, M. Kisielowski, and WP, in progress.
\({ }^{6}\) N. Kwidzinski, D. Malafarina, J. Ostrowski, WP, and T. Schmitz,
Phys. Rev. D 101, 104017 (2020).
\({ }^{7}\) WP and T. Schmitz, Phys. Rev. D 102, 046004 (2020)
\({ }^{8}\) A. Góźdź, A. Pȩdrak, J. Ostrowski, and WP, in progress.
```


Prospects: quantization of interior of black hole

- isotropic BHs, can be done
- quantum shell model (Minkowski+shell+Schwarzschild) ${ }^{5}$
- classical Oppenheimer-Snyder (FRW+Sch), classical Lemaître-Tolman-Bondi (LTB+Sch) ${ }^{6}$
- quantum FRW+Sch model ${ }^{7}$.
- quantum LTB+Sch model ${ }^{8}$
- anisotropic BHs, challenge
- Bianchi-type (inside) + Sch-like (outside), in progress - BKL (inside) + Sch-like (outside), in progress
- radiation of GWs in cases of BIX and BKL, in progress

[^10]
Prospects: quantization of interior of black hole

- isotropic BH , can be done
- quantum shell model (Minkowski+shell+Schwarzschild) ${ }^{5}$
- classical Oppenheimer-Snyder (FRW+Sch), classical Lemaître-Tolman-Bondi (LTB+Sch) ${ }^{6}$
- quantum FRW+Sch model ${ }^{7}$.
- quantum LTB+Sch model ${ }^{8}$
- anisotropic BHs, challenge
- Bianchi-type (inside) + Sch-like (outside), in progress
- BKL (inside) + Sch-like (outside), in progress
- radiation of GWs in cases of BIX and BKL, in progress

[^11]
Conclusions

- BKL scenario concerns generic singularity of general relativity so that its resolution at quantum level strongly suggests that quantum gravity is free from singularities.
- It makes sense applying quantum gravity to address the issues of black holes singularities.
- quantum bounce, i.e. black to white hole transition, may lead to astrophysical small bang (analogy with cosmological Big Bang).
- quantum gravity may be used to get insight into the origin of numerous highly energetic explosions in distant galaxies and vice versa.

Conclusions

- BKL scenario concerns generic singularity of general relativity so that its resolution at quantum level strongly suggests that quantum gravity is free from singularities.
- It makes sense applying quantum gravity to address the issues of black holes singularities.
- quantum bounce, i.e. black to white hole transition, may lead to astrophysical small bang (analogy with cosmological Big Bang).
- quantum gravity may be used to get insight into the origin of
numerous highly energetic explosions in distant galaxies
and vice versa.

Conclusions

- BKL scenario concerns generic singularity of general relativity so that its resolution at quantum level strongly suggests that quantum gravity is free from singularities.
- It makes sense applying quantum gravity to address the issues of black holes singularities.

Conclusions

- BKL scenario concerns generic singularity of general relativity so that its resolution at quantum level strongly suggests that quantum gravity is free from singularities.
- It makes sense applying quantum gravity to address the issues of black holes singularities.
- quantum bounce, i.e. black to white hole transition, may lead to astrophysical small bang (analogy with cosmological Big Bang).
- quantum gravity may be used to get insight into the origin of numerous highly energetic explosions in distant galaxies and vice versa.

References

[1] A. Góźdź, W. Piechocki, G. Plewa, Eur. Phys. J. C (2019) 79:45.
[2] A. Góźdź, W. Piechocki, Eur. Phys. J. C (2020) 80:142.
[3] N. Kwidzinski, D. Malafarina, J. J. Ostrowski, W. Piechocki,
T. Schmitz, Phys. Rev. D 101, 104017 (2020).
[4] W. Piechocki, T. Schmitz, Phys. Rev. D 102, 046004 (2020).
[5] A. Góźdź, W. Piechocki, T. Schmitz, Eur. Phys. J. Plus, in press.

Thank you!

[^0]: ${ }^{1}$ E. M. Lifshitz, J. Phys., U.S.S.R. 10, 116 (1946)
 ${ }^{2}$ V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz,
 Adv. Phys. 19, 525 (1970); 31, 639 (1982)

[^1]: ${ }^{1}$ E. M. Lifshitz, J. Phys., U.S.S.R. 10, 116 (1946)

[^2]: ${ }^{1}$ E. M. Lifshitz, J. Phys., U.S.S.R. 10, 116 (1946)

[^3]: ${ }^{1}$ E. M. Lifshitz, J. Phys., U.S.S.R. 10, 116 (1946)
 ${ }^{2}$ V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz,
 Adv. Phys. 19, 525 (1970); 31, 639 (1982)

[^4]: ${ }^{3}$ T. Damour, M. Henneaux and H. Nicolai, Class. Quant. Grav. 20 (2003) R145

[^5]: ${ }^{3}$ T. Damour, M. Henneaux and H. Nicolai, Class. Quant. Grav. 20 (2003) R145

[^6]: ${ }^{3}$ T. Damour, M. Henneaux and H. Nicolai, Class. Quant. Grav. 20 (2003) R145

[^7]: ${ }^{3}$ T. Damour, M. Henneaux and H. Nicolai, Class. Quant. Grav. 20 (2003) R145

[^8]: ${ }^{4}$ E. Czuchry and WP, Phys. Rev. D 87, 084021 (2013).

[^9]: ${ }^{4}$ E. Czuchry and WP, Phys. Rev. D 87, 084021 (2013).

[^10]: ${ }^{5}$ A. Góźdź, M. Kisielowski, and WP, in progress.
 ${ }^{6}$ N. Kwidzinski, D. Malafarina, J. Ostrowski, WP, and T. Schmitz, Phys. Rev. D 101, 104017 (2020).
 ${ }^{7}$ WP and T. Schmitz, Phys. Rev. D 102, 046004 (2020)
 ${ }^{8}$ A. Góźdź, A. Pȩdrak, J. Ostrowski, and WP, in progress.

[^11]: ${ }^{5}$ A. Góźdź, M. Kisielowski, and WP, in progress.
 ${ }^{6}$ N. Kwidzinski, D. Malafarina, J. Ostrowski, WP, and T. Schmitz, Phys. Rev. D 101, 104017 (2020).
 ${ }^{7}$ WP and T. Schmitz, Phys. Rev. D 102, 046004 (2020)
 ${ }^{8}$ A. Góźdź, A. Pȩdrak, J. Ostrowski, and WP, in progress.

