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Introduction
1922, Friedmann’s solution to Einstein’s equations

I assumes isotropy and homogeneity of space
I solution includes gravitational singularity

(gravitational and matter fields invariants diverge)
I commonly used in astrophysics and cosmology

1946, discovery by Lifshitz that isotropy is unstable in the
evolution towards the singularity1

In late 50-ties relativists (USSR, USA) started examination
of models with homogeneous space
Belinskii-Khalatnikov-Lifshitz (BKL) conjecture: GR implies
the existence of generic solution that is singular2

I corresponds to non-zero measure subset of all initial data
I is stable against perturbation of initial data
I depends on arbitrary functions defined on space

1E. M. Lifshitz, J. Phys., U.S.S.R. 10, 116 (1946)
2V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz,

Adv. Phys. 19, 525 (1970); 31, 639 (1982)
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General remarks

BKL conjecture concerns both cosmological and astrophysical
singularities
low energy limits of bosonic sectors of superstring models are
consistent with BKL scenario3

Penrose-Hawking’s singularity theorems (of 60-ties): possible
existence of incomplete geodesics in spacetime; needn’t imply
that the invariants diverge; these theorems say nothing about the
dynamics of gravitational field near singularities
the existence of generic singularities in solutions to Einstein’s
equations

I signal the existence of the limit of validity of GR
I give support to observed black holes and big bang singularities

hypothesis: quantization of GR may lead to the theory that is
devoid of singularities so that it could be used to explain
observational data

3T. Damour, M. Henneaux and H. Nicolai, Class. Quant. Grav. 20 (2003) R145
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The BKL scenario
The dynamics that underlies the BKL conjecture, called the BKL
scenario, is the following

d2 ln a
dτ2 =

b
a
− a2,

d2 ln b
dτ2 = a2 − b

a
+

c
b
,

d2 ln c
dτ2 = a2 − c

b
, (1)

d ln a
dτ

d ln b
dτ

+
d ln a
dτ

d ln c
dτ

+
d ln b

dτ
d ln c
dτ

= a2 +
b
a

+
c
b
. (2)

where a = a(τ), b = b(τ), c = c(τ) are directional scale factors.

Eqs. 1)–(2) define a highly nonlinear coupled system of equations.

These equations have been given to me by Vladimir Belinski (2010)
and ... I decided to quantize this dynamics to see if quantization may
resolve the generic cosmological singularity of general relativity.
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Hamilton’s dynamics underlying the BKL scenario
Making use of the reduced phase space technique4 enables rewriting
the dynamics (1)–(2) in the form of the Hamiltonian system:

dq1/dt = ∂H/∂p1 = (p2 − p1 + t)/2F , (3)
dq2/dt = ∂H/∂p2 = (p1 − p2 + t/2F , (4)
dp1/dt = −∂H/∂q1 = (2e2q1 − eq2−q1/F , (5)
dp2/dt = −∂H/∂q2 = −1 + eq2−q1/F , (6)

where H(q1,q2; p1,p2; t) := −q2 − ln F (q1,q2,p1,p2, t), and where

F := −e2q1 − eq2−q1 − 1
4

(p2
1 + p2

2 + t2) +
1
2

(p1p2 + p1t + p2t) > 0. (7)

Hamiltonian is not of polynomial-type so that canonical quantization
cannot be applied.

4E. Czuchry and WP, Phys. Rev. D 87, 084021 (2013).
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Quantization of BKL scenario

How to quantize a non-polynomial Hamiltonian if canonical approach
is useless?

Answer: try to use coherent states approach
J. P. Gazeau and WP, J. Phys. A 37, 6977 (2004),
“Asymptotic coherent states quantization of a particle
in de Sitter space.”
A. Góźdź, WP, and G. Plewa, Eur. Phys. J. C (2019) 79:45,
“Quantum Belinski-Khalatnikov-Lifshitz scenario.”
A. Góźdź, WP, and T. Schmitz, Eur. Phys. J. Plus, 2020, in press,
“Dependence of the affine coherent states quantization on the
parametrization of the affine group”
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Quantum dynamics

Making use of the coherent states quantization we have found the
self-adjoint quantum Hamiltonian Ĥ corresponding to the classical one.
Thus, the quantum evolution has been defined by the Schrödinger
equation:

i
∂

∂t
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 , (8)

where |ψ〉 ∈ L2(R+,dν(x)), Hilbert space of our system,
with dν(x) = dx/x , and where R+ := {x ∈ R | x > 0}.
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Quantum dynamics near singularity

Near the gravitational singularity, the classical Hamiltonian simplifies
so that the Schrödinger equation takes the form:

i
∂

∂t
Ψ(t , x1, x2) =

(
i
∂

∂x2
− i

2x2
− K (t , x1, x2)

)
Ψ(t , x1, x2) , (9)

where

K =
1

AΦ1AΦ2

∫ ∞
0

dp1

p2
1

∫ ∞
0

dp2

p2
2

ln
(
F0(t ,

p1

x1
,
p2

x2
)
)
|Φ1(x1/p1)|2|Φ2(x2/p2)|2 ,

(10)
and where

F0(t ,p1,p2) := p1p2 −
1
4

(t − p1 − p2)2 . (11)
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Resolution of singularity
The general solution to our Schrödinger equation (9) reads

Ψ = η(x1, x2 + t − t0)

√
x2

x2 + t − t0
exp

(
i
∫ t

t0
K (t ′, x1, x2 + t − t ′) dt ′

)
,

(12)
where η(x1, x2) := Ψ(t0, x1, x2) is the initial state.

One gets

〈Ψ(t)|Ψ(t)〉 =

∫ ∞
0

dx1

x1

∫ ∞
tH

dx2

x2
|η(x1, x2)|2 , (13)

so that the probability amplitude is time independent, which implies
that the quantum evolution is unitary.
One can show that it is continuous at t = 0, which means that we
are dealing with quantum bounce at t = 0 (that marks the classical
singularity).
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Prospects: quantization of interior of black hole

isotropic BHs, can be done
I quantum shell model (Minkowski+shell+Schwarzschild)5

I classical Oppenheimer-Snyder (FRW+Sch),
classical Lemaître-Tolman-Bondi (LTB+Sch)6

I quantum FRW+Sch model7.
I quantum LTB+Sch model8

anisotropic BHs, challenge
I Bianchi-type (inside) + Sch-like (outside), in progress
I BKL (inside) + Sch-like (outside), in progress
I radiation of GWs in cases of BIX and BKL, in progress

5A. Góźdź, M. Kisielowski, and WP, in progress.
6N. Kwidzinski, D. Malafarina, J. Ostrowski, WP, and T. Schmitz,
Phys. Rev. D 101, 104017 (2020).

7WP and T. Schmitz, Phys. Rev. D 102, 046004 (2020)
8A. Góźdź, A. Pȩdrak, J. Ostrowski, and WP, in progress.

Włodzimierz Piechocki (NCBJ) Towards resolving gravitational singularities problem Dec 15, 2020 10 / 13



Prospects: quantization of interior of black hole

isotropic BHs, can be done
I quantum shell model (Minkowski+shell+Schwarzschild)5

I classical Oppenheimer-Snyder (FRW+Sch),
classical Lemaître-Tolman-Bondi (LTB+Sch)6

I quantum FRW+Sch model7.
I quantum LTB+Sch model8

anisotropic BHs, challenge
I Bianchi-type (inside) + Sch-like (outside), in progress
I BKL (inside) + Sch-like (outside), in progress
I radiation of GWs in cases of BIX and BKL, in progress
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Conclusions

BKL scenario concerns generic singularity of general relativity
so that its resolution at quantum level strongly suggests that
quantum gravity is free from singularities.
It makes sense applying quantum gravity to address the issues
of black holes singularities.

I quantum bounce, i.e. black to white hole transition, may lead to
astrophysical small bang (analogy with cosmological Big Bang).

I quantum gravity may be used to get insight into the origin of
numerous highly energetic explosions in distant galaxies
and vice versa.
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Thank you!
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