Our Research
The fourth division (BP4) of The Fundamental Research Department (Departament Badań Podstawowych) deals with research in astrophysics and astronomy, mainly their observational aspects. The BP4 division is located in Warsaw at 7 Pasteura street.
The research conducted at the Astrophysics Laboratory includes:
- Cosmology: CMB, large structures of the Universe, dark matter, non-standard cosmology and gravitational lensing
- Gravitational waves: Multi-messenger astronomy, new tools for cosmology
- Physics of galaxies: Formation and evolution of galaxies, AGN, quasars and gamma-ray burst
- Interstellar medium: Star formation, neutron stars and white dwarfs
The BP4 division is also involved in several international projects. Check our Scientific Projects page for more information.
Seminars
Upcoming seminars for all of NCBJ can be found here.
The seminar archive for NCBJ can be found here.
Latest News
Scroll down for the latest news about the research done by our division or click here.
Telescope Success
JWST
Darko Donevski and Giuliano Lorenzon from the Astrophysics Department BP4 - National Centre for Nuclear Research have been awarded, as co-investigators, 13 hours of time on the largest space instrument - James Webb Space Telescope (JWST). They participated in the highly competitive Cycle 4 JWST proposal competition, which received a total of 2377 submissions. The project, led by Prof. A. Man (UBC Vancouver), aims to obtain the deepest-ever mid-infrared spectroscopy of a brightest cluster galaxy at z = 0.4. Darko and Giuliano will contribute to interpreting the interplay between warm and cold dust emission in this exceptional system, which harbours one of the most extended reservoirs of dust and gas observed to date.

Grant Success
NAWA Bekker
Congratulations to Margherita Grespan, a PhD candidate from the Astrophysics Department, who has been awarded the Bekker NAWA Fellowship! Over the next two years, she will join Oxford University’s Department of Physics to conduct research on anomaly detection in astronomical surveys, leveraging advanced machine learning techniques, including active learning. Her work will focus on uncovering rare phenomena, such as strong gravitational lenses, within the vast datasets produced by new-generation telescopes such as Euclid and Vera C. Rubin.
Also congratulations to Dr. Darko Donevski, who also received a Bekker NAWA Fellowship. Over the next 18 months, Dr. Darko Donevski will be conducting visiting research with the Astrophysics Group at SISSA (Trieste, Italy). He will lead a project exploring dust re-formation in galaxies that undergo strong outflows of gas. The project will combine theoretical approaches with cutting-edge data from the James Webb and Euclid space telescopes, as well as data from large ground-based observatories such as JCMT, ALMA and NOEMA, where Dr. Darko Donevski serves as PI or co-PI.
NCN OPUS
Congratulations to Kasia Małek, who received the OPUS 27 grant! The project is of course focused on dust: "DUSTiny: dust influence on galaxy properties in new generation surveys." (CLICK HERE for more info) Soon, we will open the call for a postdoc and a PhD; stay tuned!Conference Participation
BP4 participate in may national and intersectional conferences. We share our cutting edge research and enthusiasm with other astronomers across the world. Below are pictures from our trips across the globe over the last year or so.
Latest News

Wyścigi fotonów pod lupą grawitacji
Fotony przemierzają Wszechświat z niezmienną prędkością. Tylko czy zawsze wszystkie z tą samą? Aby sprawdzić, czy potencjalne efekty kwantowej grawitacji nie wpływają na prędkości fotonów o bardzo dużych energiach, polsko-chiński zespół naukowców zaprzągł do pracy dwa spektakularne zjawiska kosmiczne: soczewki grawitacyjne i wybuchy promieniowania gamma.

Artificial intelligence will track down gravity lenses
Images of distant galaxies, distorted by powerful gravitational lenses, are visually the most out-of-the-box phenomena photographed by telescopes. Their automatic detection is difficult for many reasons. During the international workshop in Warsaw, dedicated to machine learning, NCBJ scientists demonstrated theoretical models and software that deal with this task with high efficiency and reliability.

Dr. William Pearson receives the scholarship for outstanding young scientists
"My work so far was focused on the formation and evolution of galaxies using modern machine learning methods" - explains Dr. William James Pearson of the NCBJ Astrophysics Division. Dr. Pearson received one of this year's scholarships from the Minister of Education and Science for outstanding young scientists demonstrating significant achievements in scientific activity.

Awards of the Director of DBP NCBJ for scientific achievements in 2021
On June 27, the Awards of the Director of the Fundamental Research Department of NCBJ were presented for scientific achievements and popularizing activities for 2021. This year, the following were awarded: PhD. Varvara Batozskaya from the Department of High Energy Physics, prof. Marek Biesiada from the Department of Astrophysics, professors Michał Kowal and Janusz Skalski from the Department of Theoretical Physics and prof. Katarzyna Małek from the Department of Astrophysics for achievements in the area of popularization.

How heavy can a graviton be?
Scientists are trying to determine the properties of the graviton – the hypothetical particle that carries the gravitational force. In a study published in the Journal of High Energy Astrophysics, based on the analysis of 12 galaxy clusters, prof. Marek Biesiada and his colleagues presented a new limit on the mass of graviton. It is seven orders of magnitude stronger than the limitations of observing gravitational waves.

Influence of gravitational darkening on the spectrum of rotating objects
Exotic, rapidly rotating objects are of interest to astrophysicists. Polish astronomers are trying to obtain information about the physical conditions inside fast-rotating neutron stars. In a work published in The Astronomical Journal, they enriched the analysis with effects resulting from the phenomenon of gravitational darkening.